首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
认知无线电的关键技术和应用研究   总被引:1,自引:1,他引:1  
刘元  彭端  陈楚 《通信技术》2007,40(7):50-52
认知无线电是一种新的智能无线电技术,它通过动态的接入频谱为用户提供高容量的服务,能极大的改善现有的低效的频谱利用率。文章重点分析了认知无线电中频谱检测、频谱管理、功率控制等关键技术,以及认知无线电在超宽带、Mesh网、无线区域网的应用现状,最后探讨了认知无线电发展需要关注的难点问题。  相似文献   

2.
In the recent years, wireless applications and services have grown tremendously, resulting to a shortage of radio spectrum. On one hand, most of the available radio spectrum has already been allocated to different users and service providers. On another hand, research and statistics have revealed that the spectrum utilization usability is very limited. To address this dilemma, the concept of cognitive radio has emerged, which promotes the use of overlay and underlay transmission techniques to boost the utilization of radio spectrum resources. This paper provides a comprehensive survey of these 2 techniques and compares them qualitatively based on several network parameters. Next, this paper simulates overlay and underlay transmission techniques in OMNeT++ simulator on different network parameters, namely, Primary user arrival rate, throughput, sensing duration, and energy consumption. Our findings reveal that neither the overlay nor the underlay technique is sufficient itself to fulfill the demands for future wireless systems, and adopting a hybrid access technique consisting of a joint utilization of overlay and underlay approaches is desirable. Furthermore, the key challenges and open research issues in radio spectrum resources utilization are discussed.  相似文献   

3.
Cooperative cognitive radio networks are new cognitive radio paradigm. Cooperative communication approaches, such as cooperative spectrum sensing and cooperative spectrum sharing, are playing key roles in the development of cognitive radio networks. To achieve the high performance, a cooperative cognitive communication framework is often used to model various cooperative spectrum sensing or sharing scenarios. However, its implementation faces numerous challenges due to the complexity of mobility and traffic models, the needs of dynamic spectrum access, the heterogeneous requirements from different users, and the distributed structure of the network. Fortunately, cooperative game theory can be used to formulate and model the interactions among licensed and unlicensed users for spectrum sensing and spectrum sharing to efficiently allocate spectrum resource in the highly dynamic and distributed radio environment. In this paper, we first present the cooperative communication technologies and describe their existing challenges, then introduce different game solutions, after that, we discuss several cooperative game strategies, and analyze the associated their applications in cognitive radio networks, at final, some open directions for future research on economic strategies in cooperative communication in cognitive radio networks are proposed.  相似文献   

4.
Economic Approaches for Cognitive Radio Networks: A Survey   总被引:1,自引:0,他引:1  
Efficient resource allocation is one of the key concerns of implementing cognitive radio networks. Game theory has been extensively used to study the strategic interactions between primary and secondary users for effective resource allocation. The concept of spectrum trading has introduced a new direction for the coexistence of primary and secondary users through economic benefits to primary users. The use of price theory and market theory from economics has played a vital role to facilitate economic models for spectrum trading. So, it is important to understand the feasibility of using economic approaches as well as to realize the technical challenges associated with them for implementation of cognitive radio networks. With this motivation, we present an extensive summary of the related work that use economic approaches such as game theory and/or price theory/market theory to model the behavior of primary and secondary users for spectrum sharing and discuss the associated issues. We also propose some open directions for future research on economic aspects of spectrum sharing in cognitive radio networks.  相似文献   

5.
Cognitive Radio for Flexible Mobile Multimedia Communications   总被引:13,自引:0,他引:13  
Wireless multimedia applications require significant bandwidth, some of which will be provided by third-generation (3G) services. Even with substantial investment in 3G infrastructure, the radio spectrum allocated to 3G will be limited. Cognitive radio offers a mechanism for the flexible pooling of radio spectrum using a new class of protocols called formal radio etiquettes. This approach could expand the bandwidth available for conventional uses (e.g., police, fire and rescue) and extend the spatial coverage of 3G in a novel way. Cognitive radio is a particular extension of software radio that employs model-based reasoning about users, multimedia content, and communications context. This paper characterizes the potential contributions of cognitive radio to spectrum pooling and outlines an initial framework for formal radio-etiquette protocols.  相似文献   

6.
Continuous rise in the number of users as well as the increased requirement of bandwidth per user has created a need to use the spectrum efficiently. Cognitive radios are solutions proposed to address the problem of using the spectrum efficiently. Regulatory bodies around the world, FCC included, have introduced specifications intended for cognitive radio applications. TV White Space devices, which operate in the spectrum holes caused by transition from analog to digital transmission, were the first targeted applications for cognitive radio specifications (IEEE 802.22, ECMA-392). However, to maximize the potential of the idea of cognitive radios it is desirable to be able to sense the spectrum across a wide band and accordingly transmit ??smartly??. This paper presents a possible transceiver architecture meant for integrated solutions while providing tentative block level specifications for the proposed architecture. Existing spectrum sensing techniques are discussed and an integrated low power system architecture at the PHY level suitable for waveform-based spectrum sensing technique that utilizes co-operative spectrum sensing methods is proposed.  相似文献   

7.
For any new radio technology, spectrum management is an essential part of the development process, to identify the best frequency band for operation of the system. This has to take account of the many other users and applications of the radio spectrum, so that systems neither cause, nor receive, harmful interference from other radio systems. It is a process that is sometimes considered to be unnecessarily restrictive and slow; however, that is because it is often a difficult balancing act between the technical, commercial and political pressures on the (finite) radio spectrum. This paper describes the underlying principles and processes of radio spectrum management, explaining the relationships between the organisations which are responsible for spectrum management at the national, regional and international levels. It also describes the current work on the identification of frequency bands for the new tetherless communications technologies, and in particular the 2.4 and 5 GHz bands. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
认知无线电网络用户合作机会接入方案的研究   总被引:5,自引:4,他引:1  
马志垚  曹志刚 《电子学报》2009,37(4):678-683
认知无线电技术可以用来解决随着无线通信的迅速发展而突显出来的频谱实际利用率不高的问题,并缓解频谱分配紧张的局面.本文所关注的是多个认知无线电用户(SU)的机会频谱接入问题.分布式认知无线电网络中,为避免和授权用户(PU)发生冲突,通常采用周期性感知方法,这将使吞吐量降低.本文提出了一种认知无线电用户间高效的合作方案.文中分析了用户合作的最好和最坏两种情况下系统吞吐量的解析解.通过仿真验证了理论结果,并比较分析几种方案下每个用户和系统吞吐量随用户数量的变化,得出了用户间有效的合作可以提高各自以及整个系统的吞吐量的结论.  相似文献   

9.
The cognitive radio technology is the new paradigm to fulfill ever increasing need of bandwidth ultimately the radio spectrum by accommodating the radio spectrum dynamically to secondary users/unlicensed users without causing the interference. In cognitive radio, the spectrum opportunities have been checked for Space, Time and frequency dimensions but ‘Angle’ dimension has not been explored till now. In this paper we have investigated accuracy of various ‘Angle-of-Arrival (AoA)’ estimation algorithms: ESPRIT, MUSIC, Bartlett, and Capon for opportunistic secondary users’ network under AWGN and time varying fading channels. The improvement in performance of these algorithms has been observed as array elements, signal-to-noise ratio and samples increases. An ‘adaptive thresholding’ technique has been proposed to improve the performance of AoA algorithms. Thus by estimating an ‘Angle-of- Arrival’ of licensed users, the unlicensed users can be accommodated in the same geographical area into the same channel in the same frequency band at the same time by directing unlicensed users’ beam in different direction than the direction of licensed users. Thereby improving spectrum utilization.  相似文献   

10.
As the complexities of wireless technologies increase, novel multidisciplinary approaches for the spectrum sharing/management are required with inputs from the technology, economics and regulations. Recently, the cognitive radio technology comes into action to handle the spectrum scarcity problem. To identify the available spectrum resource, decision on the optimal sensing and transmission time with proper coordination among the users for spectrum access are the important characteristics of spectrum sharing methods. In this paper, we have technically overviewed the state-of-the-art of the various spectrum sharing techniques and discussed their potential issues with emerging applications of the communication system, especially to enhance the spectral efficiency. The potential advantages, limiting factors, and characteristic features of the existing cognitive radio spectrum sharing domains are thoroughly discussed and an overview of the spectrum sharing is provided as it ensures the channel access without the interference/collision to the licensed users in the spectrum.  相似文献   

11.
认知无线电网络被认为是实现动态频谱共享、缓解频谱资源紧缺的重要途径。喷泉码能有效抵抗认知无线电网络中来自主用户的突发干扰,且无需反馈重传,从而为认知无线电网络提供了一种有效的信道编码方案。首先简介了数字喷泉码以及认知无线电网络基础知识,然后综述了数字喷泉码在认知无线电网络的链路建立、认知通信以及在资源分配中的应用现状,最后指出了在这一研究领域中需要解决的问题,并展望了发展前景。  相似文献   

12.
Radio spectrum resource is of fundamental importance for wireless communication. Recent reports show that most available spectrum has been allocated. While some of the spectrum bands (e.g., unlicensed band, GSM band) have seen increasingly crowded usage, most of the other spectrum resources are underutilized. This drives the emergence of open spectrum and dynamic spectrum access concepts, which allow unlicensed users equipped with cognitive radios to opportunistically access the spectrum not used by primary users. Cognitive radio has many advanced features, such as agilely sensing the existence of primary users and utilizing multiple spectrum bands simultaneously. However, in practice such capabilities are constrained by hardware cost. In this paper, we discuss how to conduct efficient spectrum management in ad hoc cognitive radio networks while taking the hardware constraints (e.g., single radio, partial spectrum sensing and spectrum aggregation limit) into consideration. A hardware-constrained cognitive MAC, HC-MAC, is proposed to conduct efficient spectrum sensing and spectrum access decision. We identify the issue of optimal spectrum sensing decision for a single secondary transmission pair, and formulate it as an optimal stopping problem. A decentralized MAC protocol is then proposed for the ad hoc cognitive radio networks. Simulation results are presented to demonstrate the effectiveness of our proposed protocol.  相似文献   

13.
Cognitive radio technology has been used to efficiently utilize the spectrum in wireless networks. Although many research studies have been done recently in the area of cognitive radio networks (CRNs), little effort has been made to propose a simulation framework for CRNs. In this paper, a simulation framework based on NS2 (CogNS) for cognitive radio networks is proposed. This framework can be used to investigate and evaluate the impact of lower layers, i.e., MAC and physical layer, on the transport and network layers protocols. Due to the importance of packet drop probability, end-to-end delay and throughput as QoS requirements in real-time reliable applications, these metrics are evaluated over CRNs through CogNS framework. Our simulations demonstrate that the design of new network and transport layer protocols over CRNs should be considered based on CR-related parameters such as activity model of primary users, sensing time and frequency.  相似文献   

14.
Substantial spectrum gains have been demonstrated with the introduction of cognitive radio however; such gains are usually short lived due to the increased level of interference to licensed users of the spectrum. The interference management problem is herein tackled from the transmitter power control perspective so that transmissions by cognitive radio network does not violate the interference threshold levels at the primary users as well as maintain the QoS requirements of cognitive radio users. We model the cognitive radio network for mobile and immobile users and propose algorithms exploiting primary radio environment knowledge (spectrum use), called power control with primary protection via spectrum sensing. The algorithm is briefly introduced for time invariant systems and demonstrated that it has the ability to satisfy tight QoS constraints for cognitive radios as well as meet the interference constraints for licensed users. We, however, further show that such assumption of terminal immobility in the power control algorithm would fail in cases where user mobility is considered, resulting in increased levels of interference to the primary as well as increased outages in cognitive radio network. We model the link gain evolution process as a distance dependent shadow fading process and scale-up the target signal to interference ratio to cope with user mobility. Since mobility driven power control algorithms for cognitive radios have not been investigated before, we therefore, propose a mobility driven power control framework for cognitive radios based on spectrum sensing, which ensures that the interference limit at the primary receiver is unperturbed at all times, while concurrently maintaining the QoS within the cognitive radio network as compared to static user cases. We also corroborate our algorithms with proof of convergence.  相似文献   

15.
Signal Processing in Cognitive Radio   总被引:1,自引:0,他引:1  
Cognitive radio allows for usage of licensed frequency bands by unlicensed users. However, these unlicensed (cognitive) users need to monitor the spectrum continuously to avoid possible interference with the licensed (primary) users. Apart from this, cognitive radio is expected to learn from its surroundings and perform functions that best serve its users. Such an adaptive technology naturally presents unique signal-processing challenges. In this paper, we describe the fundamental signal-processing aspects involved in developing a fully functional cognitive radio network, including spectrum sensing and spectrum sculpting.   相似文献   

16.
The global spread of wireless devices with mobile Internet access and the increasing demand of multimedia‐based applications are fueling the need for wireless broadband networks. IEEE 802.16 and 802.20 are standards for a broadband wireless access with promising cognitive radio features to support mobile Internet access. However, because of the fast changing radio environment and the demand for dynamic spectrum allocation mechanisms, these standards must continuously readjust different radio parameters. The cognitive radio makes decisions based on its built‐in inference engine, which also in time can adapt itself to different situations through the process of learning from experience. In this paper we present an automated opportunistic decision making and learning process for cognitive radio based on uncertainty reasoning algorithms. This novel approach is well suited in fast changing wireless environments with vague, incomplete, and heterogeneous information. Theory and simulations prove that decision making and learning of the cognitive radio based on the proposed approach cope with the changes in the radio environment. In this work we use fuzzy logic for the learning and decision making of the cognitive radio. Simulation also show that our approach provides accurate and precise decisions on allocating spectrum to mobile Internet users even in fast varying radio conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The electromagnetic spectrum is apportioned among various radio services and users by centralized authority. A combination of judicial procedures and system engineering methods are used, even to the level of assigning [1] channels to users within a given service. However, as demand for spectrum is increasing, some inefficiencies of this process are becoming evident. The user has little incentive to use spectrum efficiently because using less spectrum often requires greater investment without compensating reductions in operating costs. The goal of economic efficiency, in contrast, requires a balanced use of resources, rather than minimal use of spectrum. In this paper, several techniques are presented which rely on marketplace forces to move toward economic efficiency, and could be implemented within the current spectrum management framework. Incentives would be created for improved efficiency and equity.  相似文献   

18.
The proliferation of wireless technologies and services has intensified the demand for the radio spectrum. However, the currently existing fixed spectrum assignment policy leads to an inefficient and unevenly distributed spectrum utilization. Cognitive radio paradigm has been proposed to alleviate these drawbacks by employing dynamic spectrum access (DSA) methodology. Federal Communications Commission (FCC) has proposed the interference temperature model, which enables the unlicensed users to utilize the licensed frequencies simultaneously with the licensed users as long as they conform to the interference temperature constraints. Recently, throughput and delay optimal schedulers that meet the interference temperature constraints in cognitive radio networks have been formulated in the literature. However, these schedulers have high computational complexity. In this paper, we propose genetic algorithm (GA)‐based suboptimal methods addressing these throughput and delay optimal scheduling problems. The simulation results corroborate that our GA‐based approach yields very close performance to the optimal solutions and operates with much lower complexity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Webb  W. Marks  P. 《IEE Review》1996,42(2):57-60
We know that the radio spectrum is a limited and valuable resource; but how valuable, exactly? The authors describe an attempt to put a price on the intangible made by the UK Radiocommunications Agency (RA) and the Office of Telecommunications Regulation (Oftel) who commissioned a study to find a way of putting an economic value on bands of spectrum. The study was performed by the National Economics Research Associates (NERA) which provided the economic expertise, and Smith System Engineering, which provided the technical and user knowledge. The study was conceived against the backdrop of the RA's consultative document issued early in 1994, on market-based approaches to spectrum management, such as spectrum pricing and auctions, and in the wake of the PCS auctions in the USA, which had raised billions of dollars for the government. The authors discuss spectrum management for existing users. They then discuss the various theoretical models used in economic value estimation of the radio spectrum. The results of this evaluation are discussed  相似文献   

20.
Cognitive radio networks will provide high bandwidth to mobile users via heterogeneous wireless architectures and dynamic spectrum access techniques. However, CR networks impose challenges due to the fluctuating nature of the available spectrum, as well as the diverse QoS requirements of various applications. Spectrum management functions can address these challenges for the realization of this new network paradigm. To provide a better understanding of CR networks, this article presents recent developments and open research issues in spectrum management in CR networks. More specifically, the discussion is focused on the development of CR networks that require no modification of existing networks. First, a brief overview of cognitive radio and the CR network architecture is provided. Then four main challenges of spectrum management are discussed: spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号