首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
基于欧拉-欧拉双流体模型,采用重油催化裂解的11集总模型,建立了实验室小型提升管重油催化裂解流动-反应的二维模型。比较了气-固两相冷态流场和有催化反应流场,以及二维流动反应模型和0.5维模型下的轴向产品分布。结果表明,冷态流场和有催化反应时流场轴向气固相速度和颗粒浓度都存在明显差异,说明一个完备的反应器模型必须充分考虑反应与流动、传递之间的相互影响;提升管内轴向非均匀性使得二维和0.5维模型下轴向重油转化率和产品收率分布存在明显差异,对于重油转化率,柴油和汽油产率,这种差异在提升管中下部更为显著,比较提升管出口产品组成发现,二维模型结果与实验结果吻合更好。  相似文献   

2.
汽油催化改质反应过程数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
侯栓弟 《化工学报》2007,58(3):623-629
在汽油催化反应动力学模型和气固两相流动模型的基础上,建立了汽油改质反应过程流动-反应耦合模型。针对不同的转化反应器构型(提升管、提升管-床层反应器),对汽油改质过程进行了数值模拟。模拟结果表明,对提升管反应器而言,汽油经过低温改质反应后,烯烃含量可以从35.1%降低到18%左右,烯烃降低幅度可达48%,汽油中烯烃主要转化为异构烷烃。另外,随着反应温度的升高,汽油转化反应中的裂化反应增强,导致汽油收率下降。对于提升管-床层反应器而言,汽油中的烯烃含量可以降得更低,在床层空速4时,烯烃含量可以降低到5%左右,汽油收率为80%左右。  相似文献   

3.
在提升管气固两相湍流流动模型和重油反应动力学集总模型的基础上,利用Fluent软件建立了催化裂化提升管反应器气固两相流动与反应耦合模型,对实验室小型提升管反应器进行了数值模拟,考察了气固两相的流动、传热、传质与反应过程。结果表明,提升管反应器内气固两相在轴向和径向的流动、传热与反应的分布不均匀。在入口附近。原料和催化剂温度变化显著,各组分的浓度变化剧烈,在提升管上部,变化平缓。反应器出口各组分质量分数的模拟值和实验值基本吻合。说明该模型对提升管反应器出口参数和反应结果具有较好的预测性。  相似文献   

4.
分析了重整非芳的组成,并利用微型固定床反应实验装置研究了重整非芳在平衡催化剂上生产低碳烯烃的裂解性能。结果表明:重整非芳中主要含有正构烷烃和异构烷烃及少量的环烷烃;反应温度对重整非芳转化率、总低碳烯烃产率和汽油性质的影响较大,随着反应温度的提高,重整非芳的转化率和干气以及焦炭产率呈上升趋势,液体产物产率和总低碳烯烃选择性呈下降趋势,汽油中异构烷烃含量降低,芳烃含量增加,烯烃略有减少。  相似文献   

5.
利用气相色谱和质谱对重油在提升管催化裂化中试装置上反应前后烃组成进行了考察,探讨了在相近转化率时物料反应前后的烃组成变化特点.结果表明,在优化条件下,重油中大分子多环芳烃组分和胶质中的链烷基和环烷基有效裂化生成烯烃和环烷烃.并使双环和三环芳烃分子落人到柴油馏分;烯烃和环烷烃进一步发生芳构化和脱氢反应生成烷基苯.优化条件下热裂化的产物C1和C2的产率明显降低,催化反应产物C3和C4的产率基本不变;重油馏分中大分子多环芳烃组分和胶质中芳环之间的桥链或环烷基链的断裂导致汽油馏分中C5~C7小分子产物明显增加,烯烃的芳构化反应使C7和C8短支链的芳烃产率增加;柴油馏分中烷基苯和多环环芳烃增加,而环烷烃和环烷基苯含量减少.  相似文献   

6.
车用汽油烯烃含量高将带来严重环保问题.FCC装置在正常使用重油提升管时,可设计汽油提升管,用来回炼粗汽油,在降烯烃催化剂作用下,汽油中的C5~C8烯烃可进一步裂化为小分子烯烃,成为液化气组分;另外烯烃参与氢转移反应,得氢饱和为烷烃;同时烯烃环化可生成芳烃,最终使改质汽油的烯烃体积含量降至35%以下.由于芳烃辛烷值较高,从而使汽油保持稳定的高辛烷值.在有效解决芳烃缩合生焦的问题后,该工艺对汽油降烯烃效果理想.  相似文献   

7.
针对灵活多效催化裂化(FDFCC)工艺,以工业装置数据为基础建立了重油提升管催化裂化10集总和汽油提升管催化裂化7集总动力学模型,求取了10集总模型的43个动力学参数和7集总模型的18个动力学参数.结果表明,所获得的模型动力学参数是可靠的,所建立的模型能够较好地预测FDFCC装置的产品产率,并对汽油组成和丙烯产率具有良好的预测性.  相似文献   

8.
采用小型提升管催化裂化试验装置评价研制的DOC-Ⅰ降烯烃催化剂的催化裂化反应性能。结果表明,在反应温度500 ℃、剂油质量比6和停留时间1.99 s条件下,DOC-Ⅰ催化剂上原料油的转化率达75.01%,较参比催化剂提高1.79个百分点,相应的液化气产率降低0.28个百分点,汽油产率增加2.9个百分点,烯烃含量下降5.21个百分点,异构烷烃和芳烃含量明显增加,产品分布有效改善。表明研制的DOC-Ⅰ催化剂具有较好的催化裂化性能和降烯烃能力。  相似文献   

9.
根据催化裂化反应机理和灵活多效催化裂化(FDFCC)工艺特点,结合中试数据,分别确定了针对FDFCC工艺重油提升管的10集总和汽油提升管的7集总反应网络。将重油提升管中胶质沥青质向汽油、气体的裂化作为二级反应,其余(包括汽油提升管中全部反应)均作为一级不可逆反应,分别建立了10集总和7集总反应动力学模型。通过Runge-Kutta法与变尺度法(BFGS)相结合求取了模型的动力学参数。对动力学参数的分析表明,所求得的模型参数能够较好地反映催化裂化反应规律和FDFCC-Ⅲ工艺特点。模型对产品的计算值与实际值的相对偏差均小于5%,表明所开发的集总模型是可靠的。  相似文献   

10.
提升管反应器存在典型的颗粒聚团介尺度结构,其分布特性对气固流动、反应有重要影响,对介尺度结构影响规律进行分析有助于为反应器的设计与优化操作提供基础信息。采用基于能量最小多尺度(EMMS)方法的曳力模型建立了提升管气固两相流动模型,考虑了颗粒聚团对气固相间动量传递的影响。此外,进一步通过考虑颗粒聚团的存在以及颗粒聚团的非均匀性对化学反应的影响,提出了描述介尺度结构对反应速率影响的修正因子,与气固流动模型进行耦合,建立了基于介尺度结构的流动-反应综合数学模型,并进行了模型验证。进一步应用该模型,对工业催化裂化提升管反应器的流动-反应特性进行了模拟分析。结果表明,该模型可以合理描述提升管气固相互作用,能够预测出壁面附近存在较多介尺度结构的分布特性,由于聚团的存在使得重油组分难以与催化剂充分接触,生成汽柴油的反应速率较低,转化较慢,聚团的分布特性导致靠近边壁处的重油组分浓度较高,汽柴油组分浓度较低;汽柴油在聚团内部的流动阻力较大,在聚团内发生过量的二次反应生成较多焦炭,导致壁面处焦炭浓度较高。与传统基于平均化而未考虑聚团影响的模型相比,基于介尺度结构的模型所预测的汽油收率最佳值与工业实际相接近。因此,基于介尺度结构的流动-反应综合数学模型可以合理描述提升管内进行的流动-反应耦合特性,并能揭示介尺度结构对催化裂化反应过程的影响,有望为工业提升管装置反应终止剂技术的开发提供重要的基础信息。  相似文献   

11.
针对重油残渣(沥青颗粒)气化制氢工艺,在流化床-提升管耦合反应器大型冷模实验装置上,考察了不同操作条件下沥青颗粒体系在耦合反应器内截面平均密度的轴向分布. 结果表明,对单组分沥青颗粒体系,耦合反应器适宜的操作条件为:提升管表观气速ug,r=0.70~1.76 m/s;与A类颗粒相比,沥青颗粒在耦合反应器内的流动特性呈现不同的特点,整个反应器沿轴向可分为底部流化床密相区、提升管底部低密度区、提升管颗粒密度重整区、提升管加速区、充分发展区和出口约束区6个区域;反应器内截面平均密度随颗粒质量流率增大而增大,随表观气速增大而减小;确定了耦合反应器内提升管区域截面平均固含率的影响参数为ep', Fr及H/Dr,并利用实验数据回归了平均固含率的轴向分布经验模型,其计算值与实验值吻合较好.  相似文献   

12.
Based on the subsidiary riser FCC (SRFCC) process for gasoline reformation [Y.H. Bai, J.S. Gao, S.C. Li, C.M. Xu, Petrol. Process. Petrochem. (China) 35 (2004) 17–21, J.S. Gao, C.M. Xu, Y. Mao, et al., Petrol. Refin. Eng. (China) 35 (2005) 7–9], a novel conceptional process for residue catalytic cracking and gasoline reformation dual-reactions mutual control (DMC) was proposed and relevant experimental researches were carried out in a Technical Pilot Scale Riser (TPSR) FCC apparatus. The goals of DMC were to improve product quality and increase desirable product yield in residue catalytic cracking as well as in FCC gasoline upgrading. The experiments showed that the decrease of temperature difference between feedstock and regenerated catalysts in DMC by directly leading the cooled regenerated catalysts into riser reactor or feeding gasoline into riser reactor in vapor phase could decrease the amount of dry gas and coke and obtain a better quality of upgraded gasoline. Moreover, the spent catalysts still retaining high level of activity could be recycled to the base of the main riser reactor treating heavy oil and mixed with regenerated catalysts in DMC, it allows residue catalytic cracking to operate at high catalyst-to-oil ratio and the relatively low inlet catalysts temperature. The experimental results also showed that the mixed catalysts could improve the product selectivity in residue catalytic cracking, especially for light oil (gasoline and diesel). In addition, compared with the routine RFCC, the product distribution from the residue catalytic cracking in DMC contains more liquid products, less dry gas, and a better gasoline quality.  相似文献   

13.
崔刚  刘梦溪 《广州化工》2014,(16):20-21
流化催化裂化是最重要的重油加工工艺之一,提升管反应器是催化裂化装置的关键部分,提升管反应器的进料混合段存在返混严重;油剂两相在提升管截面上浓度分布不均匀等问题。进料段内油滴和催化剂的混合状况对产品的收率与分布有着极为重要的影响。从喷嘴和进料段结构对改善提升管进料段的混合效果进行了分析,同时介绍了近年来研究的新成果,以及设备应用的新进展。  相似文献   

14.
在重油二段提升管催化裂解多产丙烯(TMP)技术中,回炼富含烯烃的轻汽油可进一步增产丙烯。实验室研究表明,回炼占新鲜原料19%的轻汽油,丙烯收率即可增加5%以上,而干气增加不到1%。而在工业试验中回炼占新鲜原料21.88%的轻汽油对丙烯和干气的贡献分别为1.51%和1.37%。其原因在于回炼的轻汽油高速喷入本身造成的催化剂稀相区和重油进料造成的催化剂稀相区,导致以分子形式分散的轻汽油与催化剂不能充分接触、吸附和发生催化转化,并因催化剂流化密度低而不能及时终止未能吸附的轻汽油分子发生热裂化反应,因而丙烯的贡献低而对干气的贡献高。  相似文献   

15.
在实验室XTL-5型提升管中试装置上考察了反应温度、剂油质量比和停留时间对苏丹高酸原油催化裂化反应的影响。实验结果表明,在反应温度460℃、停留时间1.15 s、剂油比为6左右的缓和条件下,苏丹高酸原油的重油转化率在90%以上,液收可以达到80%以上。由于原料的残炭质量分数大于8%,导致苏丹达尔原油的直接催化裂化焦炭产率较高。随反应温度的升高和停留时间的延长,转化率不断提高,但汽柴油收率不断下降。随剂油比的增大,汽油产率先升高后降低,柴油收率则不断下降。  相似文献   

16.
范怡平  叶盛  卢春喜  时铭显 《化工学报》2002,53(10):1003-1008
根据实际工业的操作条件 ,采用催化裂化催化剂及空气 ,在大型冷模实验装置上对催化裂化提升管进料混合段内射流相与颗粒相的速度场、浓度场进行了系统测试 .结果表明 ,由于旋涡场的诱导作用 ,喷嘴射流注入到提升管中以后将会产生二次流动 ,二次流先是发展扩大 ,随后又与主流逐渐汇合 .根据混合流场的分布特点 ,可以将这一极其复杂的流场由下到上分为上游影响区段、主射流影响区段、二次流影响区段、混合发展区段 4部分 ,各区段在径向上又可再分为 2或 3个区来表征有关参数的分布特点  相似文献   

17.
重油催化裂化工艺的新进展   总被引:3,自引:0,他引:3  
介绍了重油催化裂化工艺的新进展,如毫秒催化裂化工艺、下行床反应器催化裂化工艺、两段提升管催化裂化工艺、多产轻质烯烃的催化裂化新工艺、催化裂化汽油改质降烯烃新工艺等,并对重油催化裂化工艺的发展趋势进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号