首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
高斯尺度空间下估计背景的自适应阈值分割算法   总被引:5,自引:0,他引:5  
为有效分割非均匀光照图像,提出一种在高斯尺度空间下估计背景的自适应阈值分割算法. 首先,利用二维高斯函数对待处理图像进行卷积操作来构建一个高斯尺度空间,在此空间下进行背景估计,并采用背景差法来消除非均匀光照干扰,从而提取出目标图像;然后,采用 矫正进行增强处理以突出较暗目标信息;最后,经强调谷底的最大类间方差法进行全局分割得到最终结果. 为验证算法的有效性,对非均匀光照条件下文本图像以及非文本图像进行了测试,并与基于偏移场的模糊C均值方法、灰度波动变换自适应阈值分割算法和自适应最小误差阈值分割算法,在错误分割率和运行时间上进行了对比. 实验结果表明,对比以上三种方法,该算法的分割结果更为理想.  相似文献   

2.
针对视觉背景提取模型存在的鬼影抑制效果差、动态背景适应能力不足等问题,本文提出了一种改进的视觉背景提取模型算法。在模型构建阶段,该算法充分融合时空域信息初始化背景模型,避免了样本的重复选取,提高了鬼影抑制能力;在像素分类阶段,根据背景动态程度,引入自适应距离阈值代替全局固定阈值,增强了模型对动态背景的适应性;在背景更新阶段,对连续多帧判定为前景的像素点进行阈值判断,并及时更新到背景模型,消除了运动背景与静止前景造成的虚影现象。多个公开视频数据的测试结果表明,本文算法相比典型算法在复杂背景下检测的准确性和鲁棒性都有了很大提高。  相似文献   

3.
复杂背景下圆形物体分割算法   总被引:5,自引:0,他引:5  
成鹏飞  高阳  王仲  张马林 《计算机应用》2006,26(10):2360-2361
对如何从复杂的工业图像中准确提取圆形目标进行了研究。阐述了传统分割方法应用于复杂图像中提取圆形目标的局限性,提出了基于双阈值结合数学形态学运算的分割算法。首先分别根据两个阈值进行分割得到两幅二值图像,然后根据目标是圆形以及其大致位置等先验知识分别对两幅图进行腐蚀,开启,闭合等数学形态学运算,将高阈值分割得到的图像中的边界信息叠加到低阈值分割得到的图像中,实现对复杂背景图像中圆形物体的准确分割与提取,解决了复杂背景图像中物体识别率低的问题。实验结果表明本方法对复杂背景的图像预处理是有效的。  相似文献   

4.
复杂背景下的细胞图像分割技术研究   总被引:1,自引:0,他引:1  
针对复杂背景下的细胞图像分割问题,考虑到传统阈值分割方法的局限性,提出了一种自适应局部阈值分割算法。该算法的基本思想是将首次分割得到的目标区域按照一定准则进行划分,分为已经正确提取的目标细胞和包含有多个细胞及部分背景的模糊区域,然后将各个模糊区域作为新的图像分别进行再次分割,从中提取出目标细胞。实验结果表明,该算法能够稳定地实现目标分割提取,具有较好的鲁棒性。  相似文献   

5.
提出了基于背景重建的运动目标分割改进算法。首先使用多帧差获得初次的背景和前景分离,使用前后多帧差重合部分的合并作为当前帧的运动对象,并通过形态膨胀操作消除二值模板中的空洞,得到该帧的并不精确的初次运动目标掩膜。通过掩膜获得稳定的累积背景。通过得到的背景差和帧间差相结合制定判断原则,获得精确的运动目标掩膜,从而对运动目标进行分割。实验表明该算法对于较大面积的运动目标,或者当摄像机拍摄方向与目标运动方向一致的情形下都可以得到较准确的效果。  相似文献   

6.
一种改进的复杂背景下视频车辆检测技术   总被引:2,自引:0,他引:2       下载免费PDF全文
视频运动目标检测是数字视频处理、分析应用的一个重要领域,其目的是把作为一个整体的视频图像序列,通过一定的方法挖掘出具有意义的运动实体数据。该文对传统阈值法的缺陷进行分析,采用改进的二维阈值结合遗传的方法提高求解寻优的速度和效率,并通过帧差结合背景补偿的方式,提出一种适合于在复杂背景环境下实时检测运动车辆的新方法。实验结果表明,该方法有较强的环境适应能力,能够很好地检测出运动车辆。  相似文献   

7.
为了提高复杂背景下彩色数字图像分割的准确率,减少噪声对图像处理的干扰,尽可能的缩短运行时间,需要对复杂背景下彩色数字图像分割算法进行研究。当前图像分割算法在彩色数字图像分割的过程中,仅仅考虑了图像像素的亮度值,没有考虑其空间特征,存在计算的复杂性过大等缺陷,影响彩色数字图像处理效果。为此,提出了一种基于随机权重粒子群的复杂背景下彩色数字图像分割算法。该算法先采用多尺度均匀滤波方法,对复杂背景下彩色数据图像进行划分,其中包含噪声和不含噪声的像素点的亮度值、结构元素以及局部区域内的图像像素加权亮度密度特征。采用多段图分割获取彩色数字图像的优化分割,在平滑项中代入彩色数字图像梯度信息,对彩色数字图像分割结果中的弱边界进行剔除,从而实现准确的彩色数字图像分割。实验仿真证明,所提算法增加了彩色数字图像分割的对比度和信噪比,提高了复杂背景下彩色数字图像分割的准确性。  相似文献   

8.
运动视频多目标分割中的背景建模对环境变化有较大的依赖性,直接运用背景差分法会产生不理想甚至是错误的分割.提出了一种基于Kalman滤波理论的改进码书背景建模算法.根据码书为每个像素建立一个彩色模型,用来区分前景和背景像素,并利用Kalman滤波器的时域递归低通滤波特性对码书背景更新模型进行了校正.实验结果表明,该算法可以有效地更新背景模型,抗干扰能力强,在复杂背景条件下可精确分割出运动目标并满足实时性要求.  相似文献   

9.
目的 复杂场景下的背景减除是智能视频监控研究领域的研究重点和热点之一.针对混合高斯模型中高斯分布个数固定和参数初始化粗糙问题,提出一种应用于复杂场景中的基于混合高斯模型的自适应背景减除算法(AMGBS).方法 通过灰度值归类算法自适应调整模型的高斯分布个数,使得背景模型能够适应场景的变化,并且结合在线 K均值(online K-means)算法和在线期望最大化(online EM)算法初始化混合高斯模型参数.结果 针对灰度值统计结果调整高斯分布数,以及采用优化参数初始化过程,实验表明,本文方法的平均查准率和平均查全率比传统的混合高斯算法高出10%左右,比其他改进的混合高斯算法高出2%左右.结论 提出一种新的自适应背景减除算法,针对灰度值统计结果调整高斯分布数,以及采用优化参数初始化过程.实验结果表明,该方法对复杂场景有较强的适应能力,能够有效快速地完成背景减除,进而实现运动目标的提取.  相似文献   

10.
复杂背景下运动目标分割算法研究   总被引:2,自引:0,他引:2  
视频监控中,准确而快速地分割出运动物体是提取各种信息的前提和关键.以图像差分法为基础,提出了一种在复杂背景下有效分割运动目标的方法.运用改进的Surendra算法提取背景.对连续帧图像的R,G,B三通道帧差分图像采用PCA融合和二值形态学重构,以提取和更新背景.将粗分割图像转换到HSV域中,采用V分量阈值法消除阴影,并应用彩色投影法解决连通体粘连和路面反光问题.实验结果表明该方法能够结合各种算法的优势,快速而较准确地提取出运动车辆目标.  相似文献   

11.
针对非参数核密度估计算法前景检测不够精确、运算量大的问题,提出了一种基于背景差分图像的核密度估计前景检测方法。该方法结合了单高斯模型和核密度估计模型进行初始背景建模,利用背景差分图像,过滤掉非动态背景区域,对动态背景区域采用核密度估计进行像素分类。同时,对非动态背景区域,采用渐进式更新;对动态背景区域,采用非参数核密度估计进行更新。实验结果表明,该算法能够精确地分割出前景目标,减少了误检噪声,降低了运算量。  相似文献   

12.
在计算机视频监控系统中,主要的目的是在摄像机固定的视频图像中检测出运动目标,在诸多检测方法中最常用的是减背景技术。减背景技术的关键是背景建模,噪声的干扰、检测方法的自适应性、模型的正确性等问题都是在背景建模过程中必须解决的问题。为了提高建模精度,本文提出了一个非参数化建模技术,称为自适应核密度估计,具有较好的适应性和鲁棒性。它是一种基于场景中像素的概率密度函数来构建的非参数核密度估计的统计模型。  相似文献   

13.
针对混合高斯背景减除法在运动目标检测应用中存在的不足,进行了以下两个方面的改进:第一,通过在混合高斯模型匹配中引入自适应匹配阈值的方法,解决由噪声或光照引起的误判问题;第二,在模型学习方面,采用不同的权重学习速率以检测静态背景区域,并提高模型的自适应性。实验结果表明,与传统的混合高斯模型的运动目标检测方法相比,改进后的方法在背景误判、场景适应性方面都有所改善。  相似文献   

14.
基于混合高斯模型(Gaussian Mixture Models,GMM)或码书模型(Codebook,CB)的传统背景建模算法和改进后的G-KDE算法被广泛地运用于运动目标检测中,但是在光照突变、非静止背景和运动目标短暂停留再运动的场景中不能正确地检测出运动目标。针对以上问题,提出了一种从静止摄像机的视频序列中检测运动目标的背景减算法。通过统计像素的经历作为时间序列,利用核密度估计判断背景像素是否受到运动目标干扰,使用K-均值聚类算法的两个连续阶段来确定可靠的背景区域,通过像素更新适应渐进的光照变化,提出一种基于对象的背景更新机制适应突然的光照变化以及非静止背景、鬼影等干扰。对实际摄取的视频进行了仿真实验,结果表明该算法比其他三种方法检测运动目标鲁棒性更好,准确性更高。  相似文献   

15.
结合强度和边界信息的非参数前景/背景分割方法   总被引:7,自引:2,他引:7  
提出一种非参数前景背景分割方法.在将图像的强度信息与边界信息进行融合、提高运动目标检测的鲁棒性的同时,针对图像阴影区域的特性,通过阴影模型能够有效地检测阴影区域.实验结果表明该方法具有一定的实用性.  相似文献   

16.
针对视觉背景提取ViBe算法在前景检测中存在的鬼影现象且长时间难以消除的缺点,提出一种改进的视觉背景提取算法。首先,在视频前n帧序列的帧差法中,引入大津(OTSU)算法求自适应阈值,以分割出更为准确的前景区域;其次,利用去除前景区域的前n帧图像合成一张尽量少的包含前景区域的样本图像;最后利用扩展的邻域范围在合成的样本图像中对模型初始化,并把扩大的范围用在ViBe背景模型更新阶段。该算法与各种经典算法在大量视频库中进行了对比实验,仿真结果表明,改进的ViBe算法能快速消除鬼影对前景检测的影响,前景检测更为准确。  相似文献   

17.
自适应阀值静止块检测的快速运动估计研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于H.264/AVC标准的运动估计研究一直是视频压缩研究的重点,提出一种自适应阀值静止块检测的运动估计算法。根据图像序列的统计特性提前中止搜索,提出菱形-小交叉-十字综合搜索算法,对不同的视频序列采取不同的搜索策略。与常规快速搜索算法相比较,实验结果表明,搜索速度提高了10倍,图像质量也得到了保证。  相似文献   

18.
针对核密度估计背景建模方法运算量大难以实时应用的问题,提出了一种基于背景直方图分布的快速核密度估计背景建模方法。选用三角核函数进行核密度估计,根据三角核带宽函数的截断效应,引入背景分布的直方图完成快速背景建模,在保证目标检测准确性的同时提高运算速度。测试实验结果验证了算法能够满足监控系统的实时性要求。  相似文献   

19.
目的 基于边缘轮廓的角点检测算法的检测性能虽然相对比较稳定,但是它对边缘轮廓的局部变化敏感,并且只是给予一个经验门限去提取角点,为此提出一种对局部变化和噪声稳健的基于图像边缘轮廓自适应阈值的角点检测算法。方法 该算法利用各向异性高斯方向导数滤波器对不同边缘和角点模型进行表征,提取表征边缘和角点的灰度及几何变化的不变属性,并通过正则化计算得到区别边缘和角点的自适应阈值。该算法首先利用Canny边缘检测器检测输入图像的边缘映射并从边缘映射中提取出边缘轮廓;然后利用各向异性高斯方向导数滤波器对所提取出的边缘曲线进行滤波平滑,计算出每一像素点的响应并与自适应阈值作比较,把响应大于阈值的点作为候选角点;最后,对候选角点进行非极大值抑制得到最终角点集。结果 提出的算法分别与Harris算法,He & Yung算法,以及ANDDs算法在仿射变换和高斯噪声的实验环境下进行比较,其性能指标为平均重复率与定位误差;并且对每个角点检测算法在无噪声和有噪声的情况下进行了角点匹配比较。4种算法的两个指标的平均排名为Harris 3.375,He &Yung 2.625,ANDDs 2.625,本文算法 1.375。本文算法在仿射变换以及高斯噪声的情况下有着良好的平均重复率和定位误差,优于其他3种算法。匹配实验中的错误点以及丢失点也少于其他3种算法。结论 图像的特征检测在计算机视觉领域是一个重要的课题,在许多视觉系统中,检测特征往往作为复杂计算的第1步。因此,这一步的可靠性会极大地影响着视觉系统整体的结果。而角点作为图像的重要特征,对其研究具有重大意义。本文算法不同于传统的基于边缘的角点检测器仅利用边缘轮廓的信息,还利用到图像边缘像素的灰度信息。而且,本文算法还采用一个自适应全局阈值,避免了角点的误判。正则化的灰度变化有效减少了噪声或者光照对检测性能的影响。通过角点匹配实验、仿射变换实验以及高斯噪声实验,可以看出,本文的角点检测器拥有良好的检测性能,并且对噪声具有稳健性。  相似文献   

20.
基于鲁棒H滤波器理论和共轭梯度自适应参数估计方法提出了一种对复杂噪声有抑制效果的语音增强算法。应用这种方法自适应地从带噪信号中提取语音参数时不必预先知道噪声源的统计特性,只要求噪声信号能量有限。因为它基于H滤波器,所以可保证由外界干扰和附加噪声引起的性能指标恶化达到最小。仿真结果表明:该语音增强算法具有计算速度快、鲁棒性好、语音增强效果明显、易于实现、可抑制复杂背景噪声等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号