首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
多文档自动文摘能够帮助人们自动、快速地获取信息,使用主题模型构建多文档自动文摘系统是一种新的尝试,其中主题模型采用浅层狄利赫雷分配(LDA)。该模型是一个多层的产生式概率模型,能够检测文档中的主题分布。使用LDA为多文档集合建模,通过计算句子在不同主题上的概率分布之间的相似度作为句子的重要度,并根据句子重要度进行文摘句的抽取。实验结果表明,该方法所得到的文摘性能优于传统的文摘方法。  相似文献   

2.
多文档文摘是将同一主题下的多个文本描述的主要的信息按压缩比提炼为一个文本的自然语言处理技术,它可以从全局的角度对网络信息进行挖掘。在面对飞速增长的网络资源时,如何准确、高效地从海量数据源内进行自动文摘处理,是多文档自动文摘面临的主要难题之一。MapReduce是Google提出的一种分布式并行计算方法,它可以部署在任意一个普通商用计算机组成的集群上,能够有效地协调集群内各计算机的计算任务,充分利用计算机集群的处理能力,能够对海量数据进行有效的分析处理。提出了一个有效的实验模型,将MapReduce分布式并行框架应用在多文档自动文摘技术中。实验结果表明,MapReduce在保证文摘质量的前提下,能够有效地提高文摘抽取过程的处理性能。  相似文献   

3.
在文本信息数量迅速增长的环境下,为提升阅读效率,提出一种基于深度学习的多文档自动文本摘要模型.在传统文摘模型的基础上将Siamese LSTM深度学习网络应用到文本相似度计算中,计算曼哈顿距离来表征文本相似度,并采用去除停用词的方法改进该网络模型以提升计算效率.实验结果表明,使用Siamese LSTM与传统余弦相似度...  相似文献   

4.
基于信息融合的多文档自动文摘技术   总被引:7,自引:0,他引:7  
徐永东  徐志明  王晓龙 《计算机学报》2007,30(11):2048-2054
提出了一个面向多文档自动文摘任务的多文本框架(Multiple Document Framework,MDF),该框架通过系统地描述不同层面的文本单元之间的相互关系以及文档集合蕴含的事件在时间上的发生及演变,将多篇文档在不损失文档集合原有信息的前提下实现信息融合.MDF简化了传统交叉文本结构理论的文本集合表示模型,又补充了信息融合理论中缺乏的事件主题的演变性和分布性信息.文中给出了建立MDF、基于MDF的信息融合、文摘生成等一整套算法.通过对32组不同主题的网络文档试验结果表明,MDF策略很好地实现了多知识源的并行融合,并获得了较好的结果.  相似文献   

5.
本文提出一种基于LSA和pLSA的多文档自动文摘策略。首先,将多个文档切分成自然段,以自然段作为聚类单位。采用了新的特征提取方法构建词-自然段矩阵,利用LSA对词-自然段矩阵进行奇异值分解,使得向量空间模型中的高维表示变成在潜在语义空间中的低维表示。然后,采用pLSA将数据转换成概率统计模型来计算。在文摘生成的过程中采用基于质心的文摘句挑选办法得到文摘并输出。实验表明,本文提出的方法有效地提高了生成文摘的质量。  相似文献   

6.
基于时间戳的多文档自动文摘   总被引:1,自引:0,他引:1       下载免费PDF全文
网站的新闻专题往往包含大量的网页,多文档自动文摘可以帮助人们从中快速获取主要信息。该文提出了利用时间戳改善文摘句子抽取质量和排序的方法。介绍了句子抽取方法、句子重要度计算、句子冗余减小方法。实验表明,形成的文摘性能良好,可以应用于实际系统中。  相似文献   

7.
多文档自动文摘综述   总被引:18,自引:9,他引:18  
秦兵  刘挺  李生 《中文信息学报》2005,19(6):15-20,56
多文档文摘是将同一主题下的多个文本描述的主要的信息按压缩比提炼为一个文本的自然语言处理技术。随着互联网上信息的日益丰富,多文档文摘技术成为新的研究热点。本文介绍了多文档文摘的产生和应用背景,阐述了多文档文摘和其他自然语言处理技术的关系,对多文档文摘国内外研究现状进行了分析,在此基础上汇总提出了多文档文摘研究的基本路线及关键技术,并总结了多文档文摘的未来及发展趋势。  相似文献   

8.
文档自动文摘是自然语言处理一个研究热点。本文提出了一种基于局部主题关键句抽取的多文档自动文摘方法。首先,将文档集合中的每篇文档划分为若干个局部主题,然后对不同文档中的局部主题进行聚类分析,最后从局部主题聚簇中间抽取所需要的文摘句。实验证明了该方法的有效性。  相似文献   

9.
提出了一种基于主题与子事件抽取的多文档自动文摘方法。该方法突破传统词频统计方法,除考虑词语频率、位置信息外,还将词语是否为描述文本集合的主题和子事件作为因素,提取出了8个基本特征,利用逻辑回归模型预测基本特征对词语权重的影响,计算词语权重。通过建立句子向量空间模型给句子打分,结合句子分数和冗余度产生文摘。对N-gram同现频率、主题词覆盖率和高频词覆盖率3种不同参数,分别在Coverage Baseline、Centroid-Based Summary和Word Mining based Summary(WMS)3种不同文摘系统下所产生的文摘质量,进行了对比实验,结果表明WMS系统在多方面具有优越的性能。  相似文献   

10.
针对面向查询的多文档自动文摘,本文将查询句混入多文档集合中的各句子中间,采用高效的软聚类算法SSC对所有的句子进行聚类。采用轮转法抽取文摘句,最后生成文摘。该方法在DUC2005的语料中测试效果很好。  相似文献   

11.
基于主题概念抽取的多文档文摘方法   总被引:1,自引:2,他引:1       下载免费PDF全文
提出一种应用于多文档文摘的有效概念抽取方法。利用WordNet中词语的同义和上下义关系进行语义消歧和概念树构造,通过概念优化算法进行主题概念抽取,建立概念向量空间模型并通过最大边缘相关方法得到文摘句。采用语义概念统计来替代传统的词形统计,能更准确地提取文档中的重要信息。DUC2005的评测结果表明,该方法比传统方法能获得更好的效果。  相似文献   

12.
林立  胡侠  朱俊彦 《计算机工程》2010,36(22):64-65
提出一种基于谱聚类的多文档摘要方法。在将文档中主题相关的句子进行聚类的基础上,同时考虑不同主题类别的重要性,综合句子位置、长度等因素以得到句子的重要性得分。根据重要性从高到低抽取满足字数要求的句子作为最终摘要。实验结果表明,该方法相较于传统摘要方法有更好的性能,能够有效地提高摘要的质量。  相似文献   

13.
文本情感摘要任务旨在对带有情感的文本数据进行浓缩、提炼进而产生文本所表达的关于情感意见的摘要,用以帮助用户更好地阅读、理解情感文本的内容。该文主要研究多文档的文本情感摘要问题,重点针对网络上存在的同一个产品的多个评论进行摘要抽取。在情感文本中,情感相关性是一个重要的特点,该文将充分考虑情感信息对文本情感摘要的重要影响。同时,对于评论语料,质量高的评论或者说可信度高的评论可以帮助用户更好的了解评论中所评价的对象。因此,该文将充分考虑评论质量对文本情感摘要的影响。并且为了进行关于文本情感摘要的研究,该文收集并标注了一个基于产品评论的英文多文档文本情感摘要语料库。实验证明,情感信息和评论质量能够帮助多文档文本情感摘要,提高摘要效果。  相似文献   

14.
基于基本要素向量空间的英文多文档自动摘要   总被引:1,自引:0,他引:1       下载免费PDF全文
在基于基本要素(BE)向量空间的英文多文档自动文摘中,句子不再用术语向量或词向量来表达,而是用基本要素向量来表示。在用k-均值聚类算法时,采用一种自动探测k值的技术。实验表明,基于基本要素的多文档自动文摘MSBEC比基于词更优越。  相似文献   

15.
信息爆炸是信息化时代面临的普遍性问题, 为了从海量文本数据中快速提取出有价值的信息, 自动摘要技术成为自然语言处理(natural language processing, NLP)领域中的研究重点. 多文档摘要的目的是从一组具有相同主题的文档中精炼出重要内容, 帮助用户快速获取关键信息. 针对目前多文档摘要中存在的信息不全面、冗余度高的问题, 提出一种基于多粒度语义交互的抽取式摘要方法, 将多粒度语义交互网络与最大边界相关法(maximal marginal relevance, MMR)相结合, 通过不同粒度的语义交互训练句子的表示, 捕获不同粒度的关键信息, 从而保证摘要信息的全面性; 同时结合改进的MMR以保证摘要信息的低冗余度, 通过排序学习为输入的多篇文档中的各个句子打分并完成摘要句的抽取. 在Multi-News数据集上的实验结果表明基于多粒度语义交互的抽取式多文档摘要模型优于LexRank、TextRank等基准模型.  相似文献   

16.
针对基于图的多文档摘要,该文提出了一种在图排序中结合维基百科实体信息增强摘要质量的方法。首先抽取文档集合中高频实体的维基词条内容作为该文档集合的背景知识,然后采用PageRank算法对文档集合中的句子进行排序,之后采用改进的DivRank算法对文档集合和背景知识中的句子一起排序,最后根据两次排序结果的线性组合确定文档句子的最终排序以进行摘要句的选取。在DUC2005数据集上的评测结果表明该方法可以有效利用维基百科知识增强摘要的质量。  相似文献   

17.
基于事件抽取的网络新闻多文档自动摘要   总被引:1,自引:0,他引:1  
目前,有代表性的自动摘要方法是根据文本片段进行聚类,较传统方法避免了信息冗余,但网络新闻文本中有些文本片段和主题无关,影响了聚类的效果,导致最终生成的摘要不够简洁。为此,该文引入事件抽取技术,提出了一种基于事件抽取的网络新闻多文档自动摘要方法。该方法首先通过二元分类器辨析出文本中的事件和非事件;然后通过聚类将文档原来以段落或句子为单位的物理划分转化为以事件为单位的内容逻辑划分,最后通过主旨事件抽取、排序及润色,生成摘要。实验结果表明,该方法是有效的,显著提高了生成摘要的质量。  相似文献   

18.
句子排序是多文本摘要中的重要问题,合理地对句子进行排序对于摘要的可读性和连贯性具有重要意义。该文首先利用神经网络模型融合了五种前人已经提出过的标准来决定任意两个句子之间的连接强度,这五种标准分别是时间、概率、主题相似性、预设以及继承。其次,该文提出了一种基于马尔科夫随机游走模型的句子排序方法,该方法利用所有句子之间的连接强度共同决定句子的最终排序。最终,该文同时使用人工和半自动方法对句子排序的质量进行评价,实验结果表明该文所提出方法的句子排序质量与基准算法相比具有明显提高。
  相似文献   

19.
仇丽青  李伟明 《计算机工程》2010,36(21):265-266,269
针对现有的多文档自动摘要生成方法中存在的问题,提出一种多文档自动摘要生成方法,该方法能够最大限度地减小摘要内容的冗余。选取权重最大的句子作为摘要句,把已选句子中包含的词汇的权重设置为接近0的常数,当下次选择摘要句时,可以避免再次选取包含这些词汇的句子。使用自动摘要评测方法ROUGE对该方法进行评测。实验结果表明,根据该方法抽取的机器摘要能够获得较高的 成绩。  相似文献   

20.
多文档文摘技术能帮助用户减少不必要的阅读时间,有广阔的应用前景。该文以新闻报道为处理对象,以MMR(Maximal Marginal Relevance)文摘提取算法为基础,针对目前新闻报道往往以专题形式组织展现的特点,提出了一种基于话题的多文档文摘方法。这种方法以话题关键字为打分依据,同时考虑句子位置特征等信息对句子的重要性进行评分。 该文利用TDT4的新闻报道语料对上述文摘方法进行了试验评价,将基于话题的文摘系统和两个Baseline文摘系统进行比较,取得了较好的实验结果,尤其在5%的压缩比例下有明显优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号