首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The reuse of dried activated sludge for adsorption of reactive dye   总被引:3,自引:0,他引:3  
Adsorption processes are alternative effective methods for removal of textile dyes from aqueous solutions. The adsorption ability of adsorbent affects by physico-chemical environment for this reason in this paper effect of initial pH, dye concentrations, temperature and dye hydrolyzation were determined in a batch system for removal of reactive dye by dried activated sludge. The Langmuir isotherm model was well described of adsorption reactive dye and maximum monolayer adsorption capacity (at pH 2) of activated sludge was determined as 116, 93 and 71mgg(-1) for 20 degrees , 35 degrees and 50 degrees C, respectively. Initial pH 2, 20 degrees C and 30min contact time are suitable for removal of reactive dyes from aqueous solutions. Activated sludge was characterized by FT-IR analysis and results showed that active sludge has different functional groups and functional groups of activated sludge are able to react with dye molecules in aqueous solution. The pseudo first-order, second-order and intraparticle diffusion kinetics were used to describe the kinetic data. The pseudo second-order kinetic model was fit well over the range of contact times and also an intra particle diffusion kinetic model was fit well but in the first 30min. The dye hydrolyzation was affected adsorption capacity of biomass and adsorption capacity of biomass decreased with dye hydrolyzation from 74 to 38mgg(-1).  相似文献   

2.
The adsorption of phenol onto chitin, a naturally occurring material was studied as a function of initial pH, temperature and initial phenol concentration. The highest phenol adsorption capacity was determined as 21.5 mgg(-1) for 300 mgdm(-3) initial phenol concentration at pH 1.0 and 40 degrees C. Adsorption data were well described by the Freundlich Model, although they could be modeled by the Langmuir equation. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The pseudo-second-order kinetic model provided the best correlation of the experimental data compared to the pseudo-first-order model. The thermodynamic constants of the adsorption process; DeltaG degrees , DeltaH degrees and DeltaS degrees were evaluated as -19.4 kJmol(-1) (at 40 degrees C), 10.2 kJmol(-1) and 0.093 kJmol(-1)K(-1), respectively. These showed that adsorption of phenol on chitin was endothermic and spontaneous.  相似文献   

3.
Removal of lead(II) and zinc(II) from aqueous solutions was studied using chemically modified distillation sludge of rose (Rosa centifolia) petals by pretreatment with NaOH, Ca(OH)(2), Al(OH)(3), C(6)H(6), C(6)H(5)CHO and HgCl(2). The adsorption capacity of biomass was found to be significantly improved. NaOH pretreated biomass showed remarkable increase in sorption capacity. Maximum adsorption of both metal ions was observed at pH 5. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. The overall adsorption process was best described by pseudo second order kinetics. The thermodynamic assessment of the metal ion-Rosa centifolia biomass system indicated the feasibility and spontaneous nature of the process and DeltaG degrees was evaluated as ranging from -26.9501 to -31.652 KJmol(-1) and -24.1905 to -29.8923KJmol(-1) for lead(II) and zinc(II) sorption, respectively, in the concentration range 10-640mgL(-1). Distribution coefficient (D) showed that the concentration of metal ions at the sorbent-water interface is higher than the concentration in the continuous aqueous phase. Maximum adsorption capacity of biomass tends to be in the order Pb(II) (87.74mgg(-1))>Zn(II) (73.8mgg(-1)) by NaOH pretreated biomass.  相似文献   

4.
The use of low-cost, easy obtained, high efficiency and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from orange peel for the removal of direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were studied. The results showed that as the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was determined as approximately 2.0. Maximum dye was sequestered within 30min after the beginning for every experiment. The adsorption of direct blue-86 followed a pseudo-second-order rate equation and fit well Langmuir, Tempkin and Dubinin-Radushkevich (D-R) equations better than Freundlich and Redlich-Peterson equations. The maximum removal of direct blue-86 was obtained at pH 2 as 92% for adsorbent dose of 6gL(-1) and 100mgL(-1) initial dye concentration at room temperature. The maximum adsorption capacity obtained from Langmuir equation was 33.78mgg(-1). Furthermore, adsorption kinetics of DB-86 was studied and the rate of adsorption was found to conform to pseudo-second-order kinetics with a good correlation (R2>0.99) with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from orange peel can be attractive options for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater show better removal percentage of DB-86.  相似文献   

5.
Adsorption of Congo red from aqueous solutions onto Ca-bentonite   总被引:2,自引:0,他引:2  
The ability of Ca-bentonite to remove Congo red dye from aqueous solutions has been carried out as a function of contact time, temperature (20-50 degrees C), pH (5-10) and concentration (50-200mgL(-1)). An amount of 0.2g of Ca-bentonite could remove more than 90.0% of the dye from 100mgL(-1) Congo red dye solution for the temperature range studied here. The amount of dye adsorbed per unit weight of Ca-bentonite increased from 23.25 to 85.29mgg(-1) with increasing concentration from 50 to 200mgL(-1), but it had a little change with temperature and decreased slightly with increasing pH. The kinetics of adsorption in view of three kinetic models, i.e., the pseudo-first-order Lagergren model, the pseudo-second-order model and the intraparticle diffusion model, was discussed. The pseudo-second-order kinetic model described the adsorption of Congo red on Ca-bentonite very well. Analysis of adsorption results obtained at 20 degrees C showed that the adsorption pattern on Ca-bentonite followed the Freundlich isotherms. It was indicative of the heterogeneity of the adsorption sites on the clay particles. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic.  相似文献   

6.
This paper deals with the application of wheat shells (WS), an agricultural by-product, for the removal of direct blue 71 (DR) from aqueous solution. The characteristics of WS surface, such as surface area, Bohem titration and scanning electron microscopy (SEM) were obtained. The removal of direct blue 71 onto WS from aqueous solution was investigated by using parameters, such as pH, temperature, adsorbent dose, contact time and initial concentration. The adsorption process attains equilibrium within 36 h. The extent of dye removal decreased with increasing adsorbent dosage and also increased with increasing contact time, temperature, in solution concentration. Optimum pH value for dye adsorption was determined between 6 and 8. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. Maximum adsorption capacity (Q(m)) was calculated as at different temperatures (293, 303 and 313 K) 40.82, 45.66 and 46.30 mgg(-1), respectively. In addition, the adsorption data obtained at different temperatures of DR by WS were applied to pseudo first-order, pseudo second-order and Weber-Morris equations, and the rate constants of first-order adsorption (k(1)), the rate constants of second-order adsorption (k(2)) and intraparticle diffusion rate constants (k(3)) at these temperatures were calculated, respectively. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation (R(2)>or=0.9904). Also, free energy of adsorption (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) changes were determined to predict the nature of adsorption. Furthermore, the results indicate that WS could be employed as a low-cost alternative to other adsorbents in the removal of direct blue 71 from aqueous solution.  相似文献   

7.
The unextracted residue obtained after a countercurrent two-step extractive process of silica from pumice lapillus, at 100 degrees C and room pressure, has been found mainly crystallized to the pseudo-cubic form typical of zeolite P. This residue could be active as a low-cost agent for the removal of heavy metals from wastewater. In this paper the removal capacity of six metallic cations (i.e. Cu(2+), Ni(2+), Zn(2+), Cd(2+), Pb(2+) and Cr(3+)) was studied in a stirred batch reactor. Results obtained showed that the removal of metal ions (100-500mgg(-1)) from wastewater is achieved in a short time and the concentration lowered under the legal limits. The adsorption mechanism mainly involves an ionic exchange between sodium ions from the solid phase and heavy metals in solution. However, if wastewater was accompanied by free acidity, it first should be neutralized to pH 4-5 to prevent zeolite destruction.  相似文献   

8.
Sonochemical treatment of fly ash for dye removal from wastewater   总被引:2,自引:0,他引:2  
Fly ash samples modified by NaOH solution and sonochemical treatment were tested for a basic dye (methylene blue) adsorption in aqueous solution. It is found that sonochemical treatment of fly ash can significantly increase the adsorption capacity depending on the concentration of NaOH and treatment time. The untreated FA and the sonochemically treated sample exhibits adsorption capacity at 6 x 10(-6)mol/g and 1.2 x 10(-5)mol/g at 30 degrees C, respectively. The adsorption tests show that solution pH and adsorption temperature also influence the adsorption behaviour. The adsorption isotherms can be fitted by Langmuir and Freudlich models, while the two-site Langmuir heterogeneous model will present the best result.  相似文献   

9.
10.
The present paper is aimed to investigate and develop cheap adsorption methods for colour removal from wastewater using waste material de-oiled mustard as adsorbent. De-oiled mustard, a biosorbent, was successfully utilized for removing a water-soluble xanthene dye, Erythrosine from wastewater. Kinetic studies of adsorption of Erythrosine at de-oiled mustard were carried out at 30 degrees C, using aqueous solutions with 5 x 10(-5)M concentration of Erythrosine. The adsorption process followed a pseudo-first order model. The equilibrium process can be well described by both Freundlich and Langmuir models, at 30, 40 and 50 degrees C. Free energy of adsorption (DeltaG degrees ), enthalpy (DeltaH degrees ), and entropy (DeltaS degrees ) changes were calculated to predict the nature of adsorption. The estimated values for DeltaG degrees were -12.81 x 10(3) and -12.57 x 10(3) over activated carbon and activated de-oiled mustard at 203 K (30 degrees C), indicate toward a spontaneous process. The positive value for DeltaH degrees indicates that the adsorption of Erythrosine dye to de-oiled mustard is an endothermic process.  相似文献   

11.
This paper presents a study on the batch adsorption of basic dye, methylene blue, from aqueous solution (40 mg L(-1)) onto cedar sawdust and crushed brick in order to explore their potential use as low-cost adsorbents for wastewater dye removal. Adsorption isotherms were determined at 20 degrees C and the experimental data obtained were modelled with the Langmuir, Freundlich, Elovich and Temkin isotherm equations. Adsorption kinetic data determined at a temperature of 20 degrees C were modelled using the pseudo-first and pseudo-second-order kinetic equations, liquid-film mass transfer and intra-particle diffusion models. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by a Langmuir isotherm equation with maximum adsorption capacities of 142.36 and 96.61 mg g(-1) for cedar sawdust and crushed brick, respectively. The second-order model best describes adsorption kinetic data. Analysis of adsorption kinetic results indicated that both film- and particle-diffusion are effective adsorption mechanisms. The Influence of temperature and pH of the solution on adsorption process were also studied. The extent of the dye removal decreased with increasing the solution temperature and optimum pH value for dye adsorption was observed at pH 7 for both adsorbents. The results indicate that cedar sawdust and crushed brick can be attractive options for dye removal from dilute industrial effluents.  相似文献   

12.
13.
Dye adsorption on unburned carbon: kinetics and equilibrium   总被引:2,自引:0,他引:2  
Unburned carbon in fly ash is an important by-product from coal combustion. In this investigation, unburned carbon has been separated from fly ash and been employed as a low cost adsorbent for a basic dye adsorption (Rhodamine B) in aqueous solution. Adsorption isotherm and kinetics of adsorption have been investigated using batch experiments. It is found that dye adsorption capacity depends on initial concentration, pH of solution, and temperature. The adsorption isotherm can be described by Langmuir model and the adsorption capacity of Rhodamine B at 30, 40, and 50 degrees C can reach 9.7 x 10(-5), 1.14 x 10(-4), and 1.5 x 10(-4)mol g(-1), respectively. The pseudo first- and second-order kinetic models have been employed to fit the dynamic adsorption. It is found that the dynamic adsorption follows the pseudo second-order model. Thermodynamic calculations indicate that the adsorption is endothermic reaction with DeltaH degrees at 25 kJ mol(-1).  相似文献   

14.
15.
In this study, various activation methods have been employed to examine the potential reuse of tannery residual biomass (TRB) obtained from vegetable tanning process for the removal of Cr(VI) and Rhodamine B (RB) from aqueous solution. The maximum BET surface area (10.42 m(2)/g), honey comb pore distribution and uptake of both Cr(VI) and RB were achieved when only 3-fold volume of HCl was used to activate the biomass. The pH and temperature experiment showed that they have considerable impact on the adsorption capacity of the used adsorbent. The presence of other ions (Na(+), Ca(2+) and NH(4)(+)) significantly reduces the metal uptake but marginal enhancement in the dye removal was observed when Na(+) and NH(4)(+) ions were present in the solution. The equilibrium data fitted satisfactorily with the Langmuir model and monolayer sorption capacity obtained as 177-217 and 213-250 mg/g for Cr(VI) and RB at 30-50°C, respectively. The sorption kinetics was found to follow the pseudo-second-order kinetic model. The increase in adsorption capacity for both metal and dye with increase in temperature indicates that the uptake was endothermic in nature. The results indicate that the HCl modified TRB (A-TRB) could be employed as a low cost adsorbent for the removal of both Cr(VI) and RB from the aqueous solution including industrial wastewater.  相似文献   

16.
17.
Sugar beet pulp was converted into effective copper sorption material by treating subsequently with NaOH and citric acid. Compared with the untreated sugar beet pulp, the cation exchange capacity of the modified sugar beet pulp increased from 0.86 to 3.21 mequiv.g(-1). Swelling capacity and COD values of modified sugar beet pulp were found to be decreased in the ratio of 38% and 61%, respectively, compared to the corresponding values of native sugar beet pulp, meaning that modification causes stabilization. Sorption characteristics of the modified sugar beet pulp towards copper ions were studied with batch experiments. Pseudo-first, pseudo-second-order and intraparticle kinetic models were applied to the kinetic data and it was found that the sorption processes followed the pseudo-second-order rate kinetics with activation energy of 16.34 kJ mol(-1). The equilibration data fit best with the Langmuir isotherm the maximum copper sorption capacity of which is 119.43 mgg(-1). The mean free energy of copper sorption process calculated from Dubinin-Radushkevich model and the Polanyi potential concept was found to be in the range of 10.91-11.95 kJ mol(-1) showing that the main mechanism governing the sorption process is ion exchange. The negative values found for enthalpy change (-14.797 kJ mol(-1) over the range of 25-55 degrees C) and free energy change (-19.361 kJ mol(-1) for 25 degrees C) indicate that the sorption process is exothermic and spontaneous in nature.  相似文献   

18.
Equilibrium studies for the adsorption of acid dye onto modified hectorite   总被引:2,自引:0,他引:2  
The adsorption of Acid dye, C.I. Acid Red 151 from aqueous solution onto modified hectorite at different concentrations and pH has been studied. Hectorite clay has been modified using two cationic surfactants, cetyldimethylbenzylammonium chloride and cetylpyridinium chloride. Present experimental study shows that acidic pH favours enhanced adsorption. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. The adsorption capacity has been found to be 208.33 and 169.49 mg g(-1) for the modified cetyldimethylbenzylammonium chloride-hectorite (CDBA-hect) and cetylpyridinium chloride (CP-hect), respectively.  相似文献   

19.
The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol(-1)) than silica (69.93 kJ mol(-1)). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 degrees C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (DeltaH degrees >40 kJ mol(-1)) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 degrees C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina.  相似文献   

20.
The adsorption of Zn(II) from both synthetic solution and kaolin industry wastewater by cattle manure vermicompost was studied. The adsorption process was dependent on the various operating variables, viz., solution pH, particle size of the vermicompost, mass of vermicompost/volume of the Zn(II) solution ratio, contact time and temperature. The optimum conditions for Zn adsorption were pH 6.0, particle size of < or = 250 microm, 1 g per 10 mL adsorbent dose, contact time of 4h and temperature of 25 degrees C. Langmuir and Freundlich adsorption isotherms fit well in the experimental data and their constants were evaluated, with R(2) values from 0.95 to 0.99. In synthetic solution, the maximum adsorption capacity of the vermicompost for Zn(2+) ions was 20.48 mg g(-1) at 25 degrees C when the vermicompost dose was 1 g 10 mL(-1) and the initial adjusted pH was 2. The batch adsorption studies of Zn(II) on vermicompost using kaolin wastewater have shown the maximum adsorption capacity was 2.49 mg g(-1) at pH 2 (natural pH of the wastewater). The small values of the constant related to the energy of adsorption (from 0.07 to 0.163 L mg(-1)) indicated that Zn(2+) ions were binded strongly to vermicompost. The values of the separation factor, R(L), which has been used to predict affinity between adsorbate and adsorbent were between 0 and 1, indicating that sorption was very favorable for Zn(II) in synthetic solution and kaolin wastewater. The thermodynamic parameter, the Gibbs free energy, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The DeltaG degrees values were -19.656 kJ mol(-1) and -16.849 kJ mol(-1) for Zn(II) adsorption on vermicompost in synthetic solution at pH 6 and 2, respectively, and -13.275 kJ mol(-1) in kaolin wastewater at pH 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号