首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromboli island has a complex geological history with repeated changes in the volcanic activity alternating with destructive events, caldera collapses and flank landslides. The last activity resulted in the creation of the Sciara del Fuoco depression which was modified by the recent 2002–2003 landslide. The variation in lithology, degree of tectonization and disturbance has resulted in the presence of a wide spectrum of geotechnical materials. This paper summarises the physical and mechanical properties of Stromboli’s intact rocks, rock masses and loose deposits, based on field surveys and laboratory tests. A new classification of the rock succession is introduced and four lithotechnical units defined: Lava, Lava-Breccia, Breccia and Pyroclastic deposit. The range of variability in bulk volume, porosity, intact rock compressive strength and geological strength index is presented. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, tensile and compressive strength, global strength and modulus of deformation calculated in a specified stress range.   相似文献   

2.
The strength of jointed rock mass is strongly controlled by the degree of interlock between its constituent rock blocks. The degree of interlock constrains the kinematic freedom of individual rock blocks to rotate and slide along the block forming joints. The Hoek–Brown (HB) failure criterion and the geological strength index (GSI) were developed based on experiences from mine slopes and tunneling projects in moderately to poorly interlocked jointed rock masses. It has since then been demonstrated that the approach to estimate the HB strength parameters based on the GSI strength scaling equations (called the ‘GSI strength equations’) tends to underestimate the confined peak strength of highly interlocked jointed rock masses (i.e. GSI > 65), where the rock mass is often non-persistently jointed, and the intact rock blocks are strong and brittle. The estimation of the confined strength of such rock masses is relevant when designing mine pillars and abutments at great depths, where the confining pressure is high enough to prevent block rotation and free sliding on block boundaries. In this article, a grain-based distinct element modeling approach is used to simulate jointed rock masses of various degrees of interlock and to investigate the influences of block shape, joint persistence and joint surface condition on the confined peak strengths. The focus is on non-persistently jointed and blocky (persistently jointed) rock masses, consisting of hard and homogeneous rock blocks devoid of any strength degrading defects such as veins. The results from this investigation confirm that the GSI strength equations underestimate the confined strength of highly interlocked and non-persistently jointed rock masses. Moreover, the GSI strength equations are found to be valid to estimate the confined strength of persistently jointed rock masses with smooth and non-dilatant joint surfaces.  相似文献   

3.
4.
5.
岩石强度是工程岩体稳定性评价和结构优化设计的前提和基础,通过岩石真三轴试验分析了岩石强度演变特征:(1)随着最小主应力的增加,岩石强度逐渐增大,但增幅逐渐减小并趋于零;(2)岩石广义压拉强度比随静水压力的增大呈先增大再减小的规律,并最终趋于1,即在π平面上呈三角形向圆形转变的过程;(3)岩石强度随中间主应力增大表现为先增大再减小的过程。三参数型指数函数完全符合岩石强度在子午面上的基本特点,而L_(WW),L_(MN)和L_(YMH) 3个罗德函数准确反映了中间主应力对岩石强度的影响,且无条件满足拉压子午面区间光滑、连续、外凸性要求。利用π平面广义拉压强度比和罗德函数将指数型拉压子午面结合,构建了指数型真三轴强度准则,分析了强度参数对岩石强度的影响及其空间包络特征。最后采用14种岩石的真三轴试验数据对指数型真三轴强度准则进行了最优拟合误差分析,结果表明指数型真三轴强度准则均具有良好的拟合精度,可正确描述软–硬不同性质岩石的强度特征。  相似文献   

6.
Although many intact rock types can be very strong, a critical confining pressure can eventually be reached in triaxial testing, such that the Mohr shear strength envelope becomes horizontal. This critical state has recently been better defined, and correct curvature or correct deviation from linear Mohr–Coulomb (M-C) has finally been found. Standard shear testing procedures for rock joints, using multiple testing of the same sample, in case of insufficient samples, can be shown to exaggerate apparent cohesion. Even rough joints do not have any cohesion, but instead have very high friction angles at low stress, due to strong dilation. Rock masses, implying problems of large-scale interaction with engineering structures, may have both cohesive and frictional strength components. However, it is not correct to add these, following linear M-C or nonlinear Hoek–Brown (H-B) standard routines. Cohesion is broken at small strain, while friction is mobilized at larger strain and remains to the end of the shear deformation. The criterion ‘c then σn tan φ’ should replace ‘c plus σntan φ’ for improved fit to reality. Transformation of principal stresses to a shear plane seems to ignore mobilized dilation, and caused great experimental difficulties until understood. There seems to be plenty of room for continued research, so that errors of judgement of the last 50 years can be corrected.  相似文献   

7.
In this study we examine seven different failure criteria by comparing them to published polyaxial test data (σ123) for five different rock types at a variety of stress states. We employed a grid search algorithm to find the best set of parameters that describe failure for each criterion and the associated misfits. Overall, we found that the polyaxial criteria Modified Wiebols and Cook and Modified Lade achieved a good fit to most of the test data. This is especially true for rocks with a highly σ2-dependent failure behavior (e.g. Dunham dolomite, Solenhofen limestone). However, for some rock types (e.g. Shirahama Sandstone, Yuubari shale), the intermediate stress hardly affects failure and the Mohr–Coulomb and Hoek and Brown criteria fit these test data equally well, or even better, than the more complicated polyaxial criteria. The values of C0 yielded by the Inscribed and the Circumscribed Drucker–Prager criteria bounded the C0 value obtained using the Mohr–Coulomb criterion as expected. In general, the Drucker–Prager failure criterion did not accurately indicate the value of σ1 at failure. The value of the misfits achieved with the empirical 1967 and 1971 Mogi criteria were generally in between those obtained using the triaxial and the polyaxial criteria. The disadvantage of these failure criteria is that they cannot be related to strength parameters such as C0. We also found that if only data from triaxial tests are available, it is possible to incorporate the influence of σ2 on failure by using a polyaxial failure criterion. The results for two out of three rocks that could be analyzed in this way were encouraging.  相似文献   

8.
We present a novel methodology for estimation of equivalent Mohr–Coulomb strength parameters that can be used for design of supported tunnels in elasto-plastic rock masses satisfying the non-linear empirical Hoek–Brown failure criterion. We work with a general adimensional formulation of the Hoek–Brown failure criterion in the space of normalized Lambe's variables for plane stress, and we perform linearization considering the stress field in the plastic region around the tunnel. The procedure is validated using analytical solutions to a series of benchmark test cases. Numerical solutions are also employed to validate the procedure in cases for which analytical solutions are not available. Results indicate that the stress field in the plastic region around the tunnel, as well as the linearization method employed and the quality of the rock mass, has a significant impact on computed estimates of equivalent Mohr–Coulomb strength parameters. Results of numerical analyses also show that our proposed linearization method can be employed to estimate loads and moments on the tunnel support system. We recommend the equating model responses (EMR) method to compute equivalent Mohr–Coulomb strength parameters when the tunnel support pressure is accurately known, and we further show that our newly introduced linearization method can be employed as an alternative to the best fitting in the existing stress range (BFe) and best fitting in an artificial stress range (BFa) methods, providing performance estimates that are generally better than estimates of the BFe and BFa methods when differences with the response of the Hoek–Brown rock mass are of engineering significance (say more than 10%).  相似文献   

9.
This study investigates early age bond strength of shotcrete (sprayed concrete), in the case of shotcrete sprayed on hard rock. Shotcrete differs from ordinary, cast concrete through the application technique and the addition of set accelerators which give immediate stiffening. The bond between shotcrete and rock is one of the most important properties. During the very first time after spraying the physical properties and the bond to the rock depend on the set accelerator and the micro structure that is formed. In this work a laboratory test method for measuring early bond strength for very young or early age shotcrete is presented. The newly developed method was tested and evaluated and proved that it can be used for bond strength testing already from a couple of hours after shotcreting.  相似文献   

10.
11.
A Unified Strength criterion for rock material   总被引:21,自引:0,他引:21  
A non-linear Unified Strength criterion for rock material is presented. It is the development of the Unified Strength Theory (in: M. Jono, T. Inoue (Eds.), Mechanical Behaviour of Materials-VI (ICM-6), Pergamon, Oxford, 1991, pp. 841–846) and the modification of the Hoek–Brown strength criterion (Underground Excavations in Rock, The Institution of Mining and Metallurgy, London, 1980). The effect of intermediate principal stress on rock strength is considered in the non-linear Unified Strength criterion. The Hoek–Brown criterion is a single-shear strength criterion that forms the lower bound, and the non-linear twin-shear strength criterion forms the upper bound in the deviatoric plane. All the failure criteria ranging from the Hoek–Brown criterion (lower bound) and the non-linear twin-shear criterion (upper bound) and a series of criteria ranging between these two bounds may be introduced by the non-linear Unified Strength criterion. The theory can also be generalized to rock mass strength.  相似文献   

12.
This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design. Data from various large-scale rock mass failures are introduced, including coal pillars. The damage-initiation,spalling-limit approach is compared to the coal pillar database. New comparisons of estimating the geological strength index(GSI) and relationships to estimate the Hoeke Brown failure criterion parameters, mb, s and a, are presented.  相似文献   

13.
A new hard rock TBM performance prediction model for project planning   总被引:3,自引:0,他引:3  
Among the models used for performance prediction of hard rock tunnel boring machines two stand out and are often used in the industry. They include the semi theoretical model by Colorado School of Mines and the empirical model by Norwegian University of Science and Technology in Trondheim (NTNU). While each have their strong points and area of applications, more accurate prediction has been sought by modifying one of the existing models or introduction of a new model. To achieve this, a database of actual machine performance from different hard rock TBM tunneling projects has been compiled and analyzed to develop a new TBM performance prediction model. To analyze the available data and offer new equations using statistical methods, relationships between different geological and TBM operational parameters were investigated. Results of analyzes show that there are strong relationships between geological parameters (like UCS, joint spacing and RQD) and TBM performance parameters specially Field Penetration Index (FPI). In this study, a boreability classification system and a new empirical chart, for preliminary estimation of rock mass boreability and TBM performance is suggested.  相似文献   

14.
Back-analysis of rock mass strength parameters using AE monitoring data   总被引:3,自引:0,他引:3  
Most back-analyses in geotechnical engineering are based on methods that utilize field displacement monitoring data. In the present study, a novel method is developed to back-calculate rock mass strength parameters from AE (acoustic emission) monitoring data in combination with FEM stress analysis. The method is based on the important concept of generalized AE initiation threshold of rock masses, established from comprehensive data analysis of laboratory test and underground monitoring programs using AE and microseismic (MS) techniques. An easy-to-use Wizard is developed in Microsoft Excel™ to assist site engineers to perform the back-analysis. The efficient solver in Excel is utilized to reach the optimization solution of an objective function with constraints. The Wizard allows the user to complete the analysis process in an interactive fashion. One example is given to demonstrate the back-analysis process using AE monitoring data recorded from a cavern site. The rock mass strength parameters identified from this approach compare well with field test data, suggesting that the tool can be used effectively to back-calculate rock mass strength parameters from AE monitoring data.  相似文献   

15.
Boreability is popularly adopted to express the ease or difficulty with which a rock mass can be penetrated by a tunnel boring machine. Because the boreability is related to the rock mass properties, TBM specifications and TBM operation parameters, an accurately definable quantity has not been obtained so far. In order to analyze and compare rock mass boreability, a series of TBM shield friction tests were conducted in a TBM tunneling site. Two sets of TBM penetration tests were performed in different rock mass conditions during tunneling in rock. In each step of the penetration test, the rock muck was collected to perform the muck sieve analyses and the shape of large chips was surveyed in order to analyze the TBM chipping efficiency under different cutter thrusts. The results showed that a critical point exists in the penetration curves. The penetration per revolution increases rapidly with increasing thrust per cutter when it is higher than the critical value. The muck sieve analysis results verified that with increasing thrust force, the muck size increases and the rock breakage efficiency also increases. When the thrust is greater than the critical value, the muck becomes well-graded. The muck shape analysis results also showed with the increase of the thrust, the chip shape changes from flat to elongated and flat. The boreability index at the critical point of penetration of 1 mm/rev. defined as the specific rock mass boreability index is proposed to evaluate rock mass boreability.  相似文献   

16.
Conventional methods for prediction of rock strength are based on using classical failure criteria. In this study, artificial neural networks were regarded as new tools for considering the strength of intact rock in a wide range of loading condition from uniaxial tension to triaxial compression. A comprehensive data set of the values of major and minor principal stresses at failure from 1638 laboratory tests on seven rock types was collected. For each rock type, data were randomly divided into two subsets, training and test sets. Neural networks were trained using training sets to predict the value of major principal stress at failure from uniaxial compressive stress and minor principal stress. Small architecture and regularization method were adopted to avoid over-fitting problems. The same training sets were used in determining the constants of two popular empirical failure criteria, namely Bieniawski–Yudhbir and Hoek–Brown. Then, the test sets were used to examine the accuracy and generalization of the models in predicting the strength in new situations. Comparison of the results of the neural network models with those of the empirical criteria showed that the former approach always lead to less root mean squared error and higher coefficient of determination. On average, for different rock types, using ANN models led to about 30% decrease in prediction error relative to best empirical models. These models also showed better flexibility in the prediction of major principal stress at failure in both brittle and ductile failure regimes.  相似文献   

17.
18.
Predicting the performance of the impact hammers is one of the major subjects in determining the economics of the underground excavation projects in which they are utilized. Therefore, researchers have been attracted to developing performance prediction models for these machines. Physical and mechanical properties of rocks have been used to estimate the performance of impact hammers over the last few decades. In this study, the instantaneous breaking rate (IBR, m3/h) of an impact hammer used in construction of Levent-Hisarüstü metro tunnel (Istanbul) is recorded in detail. Sixty rock samples are obtained from tunnel route during the excavation of which the machine is employed. Physical and mechanical property tests are performed on the obtained samples. A data set including uniaxial compressive strength (UCS), rock quality designation index (RQD), Brazilian tensile strength (BTS), density (ρ), Schmidt hammer hardness (SHH), Shore scleroscope hardness (SSH), Cerchar abrasivity index (CAI), and IBR is formed. Regression analysis techniques are applied to the created data set in order to develop a performance prediction model. The investigation results in a model that can predict IBR based on UCS, RQD, and the output power of the impact hammer. The proposed model passes both F-test and t-test at 0.95 confidence level. The soundness of the model is successfully tested against two formerly developed models. Covering a wide range of application and requiring only two of the most common and versatile rock properties as input parameters are the other advantages of the suggested model.  相似文献   

19.
Predicting the deformation moduli of rock masses   总被引:1,自引:0,他引:1  
Predictive empirical models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to the presence of discontinuities. Such empirical models are open to improvement because they are based on collected data. The purposes of the present study are to assess the existing empirical equations and to develop a new empirical approach. For this reason, in the first stage of the study, the prediction performance of the existing models proposed for predicting the deformation modulus of rock masses were evaluated statistically by using a database including 115 data values obtained from in situ plate loading and dilatometer tests. A new empirical approach with higher prediction capacity than the existing empirical models was developed in the subsequent stage of the study. The new empirical model considers the modulus ratio of intact rock (Ei/UCS), rock quality designation (RQD) and weathering degree (WD). Although, data obtained from very weak and weak rock masses were included in the development of the new empirical equation, the type of rocks employed in the study were limited. Therefore, a crosscheck between the new empirical equation and previous empirical approaches should be performed in the design stage.  相似文献   

20.
This paper presents a strength criterion for intact rock,which can well describe triaxial test data under compressive or tensile stress state.The proposed criterion is defined in terms of three parameters.One parameter expresses the apparent unconfined compressive strength(AUCS),obtained from the Coulomb-Mohr criterion,as a regulated unconfined compressive strength(RUCS).Two other parameters,and,are material-dependent that can be determined by regression analysis.The proposed criterion is compared with selected applicable strength criteria separately for compressive and tensile strengths.Coefficient of determination and accordance coefficient are considered in comparisons between the proposed and selected strength criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号