首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heterogeneity of as-synthesized single-walled carbon nanotubes (SWNTs) precludes their widespread application in electronics, optics and sensing. We report on the sorting of carbon nanotubes by diameter, bandgap and electronic type using structure-discriminating surfactants to engineer subtle differences in their buoyant densities. Using the scalable technique of density-gradient ultracentrifugation, we have isolated narrow distributions of SWNTs in which >97% are within a 0.02-nm-diameter range. Furthermore, using competing mixtures of surfactants, we have produced bulk quantities of SWNTs of predominantly a single electronic type. These materials were used to fabricate thin-film electrical devices of networked SWNTs characterized by either metallic or semiconducting behaviour.  相似文献   

2.
The purpose of this study is to evaluate in vivo efficacy and loco-regional distribution of a doxorubicin (DOX)-loaded Polyoxyl 35 Castor Oil (Cremophor EL, CrEL) noncovalent modified single-walled carbon nanotubes (SWNTs) formulation in a sarcoma tumor model after intratumoral injection. The drug loaded SWNTs were successfully prepared via physical absorption, which was confirmed by UV-vis-NIR absorbance spectra and dynamic light scattering assay. Solid tumor models were obtained by injecting mouse sarcoma 180 cells into the thighs of ICR mice. CrEL-SWNTs-DOX, CrEL-SWNTs, free DOX and saline (control) were intratumorally injected after 5 days post transplantation. The biodistribution studies demonstrated that intratumoral delivery of CrEL-SWNTs-DOX resulted in longer drug retention time in tumor, higher tumor level (27.6-fold than that of free DOX), as well as less accumulation in other solid tissues, especially in heart. Furthermore, in vivo anti-tumor activity results showed that CrEL-SWNTs-DOX could effectively suppress the tumor growth than free DOX and the control, attributing to its enhanced intratumoral DOX level. The histopathological findings revealed that the new carbon nanomaterials were a safe vehicle for topical drug delivery systems. It is concluded that this noncovalent modification of carbon nanotubes by CrEL for anticancer agents might be a promising alternative for cancer treatment.  相似文献   

3.
We present Raman scattering and scanning tunnelling microscopy (STM) measurements on hydrogen plasma etched single-wall carbon nanotubes (SWNTs). Interestingly, both the STM and Raman spectroscopy show that the metallic SWNTs are dramatically altered and highly defected by the plasma treatment. In addition, structural characterizations show that metal catalysts are detached from the ends of the SWNT bundles. For semiconducting SWNTs we observe no feature of defects or etching along the nanotubes. Raman spectra in the radial breathing mode region of plasma-treated SWNT material show that most of the tubes are semiconducting. These results show that hydrogen plasma treatment favours etching of metallic nanotubes over semiconducting ones and therefore could be used to tailor the electronic properties of SWNT raw materials.  相似文献   

4.
The purpose of this study is to evaluate in vivo efficacy and loco-regional distribution of a doxorubicin (DOX)-loaded Polyoxyl 35 Castor Oil (Cremophor EL, CrEL) noncovalent modified single-walled carbon nanotubes (SWNTs) formulation in a sarcoma tumor model after intratumoral injection. The drug loaded SWNTs were successfully prepared via physical absorption, which was confirmed by UV-vis-NIR absorbance spectra and dynamic light scattering assay. Solid tumor models were obtained by injecting mouse sarcoma 180 cells into the thighs of ICR mice. CrEL-SWNTs-DOX, CrEL-SWNTs, free DOX and saline (control) were intratumorally injected after 5 days post transplantation. The biodistribution studies demonstrated that intratumoral delivery of CrEL-SWNTs-DOX resulted in longer drug retention time in tumor, higher tumor level (27.6-fold than that of free DOX), as well as less accumulation in other solid tissues, especially in heart. Furthermore, in vivo anti-tumor activity results showed that CrEL-SWNTs-DOX could effectively suppress the tumor growth than free DOX and the control, attributing to its enhanced intratumoral DOX level. The histopathological findings revealed that the new carbon nanomaterials were a safe vehicle for topical drug delivery systems. It is concluded that this noncovalent modification of carbon nanotubes by CrEL for anticancer agents might be a promising alternative for cancer treatment.  相似文献   

5.
We report, an effective method of purification by dry oxidation and acid treatments of commercial arc discharged single-walled carbon nanotubes (SWNTs) without affecting their pristine structure. Stable dispersion of the purified SWNTs in 1,2-dichlorobenzene is accomplished in the absence of surfactants/polymers at a concentration of 0.1 mg/ml using the ultrasonic process. Fabrication of transparent conducting films from the nanotube dispersed solution on UV/ozone treated flexible substrates, polyethylene naphthalate (PEN) and polyether sulphone (PES) is reported. We produced SWNT films on PEN/PES for sheet resistances 110/100 and 200/193 Ω/sq with 80 and 90% transmittances, respectively, at 550 nm after a post treatment in a mixture of isopropyl alcohol-nitric acid solution. Effective wetting of nanotubes during post treatment enhanced the film conductivity without sacrificing its stability and optical transparency.  相似文献   

6.
Single=walled carbon nanotubes(SWNTs) were synthesized by a hydrogen arc discharge method.A high yield of gram quantity of SWNTs per hour was achieved.Tow kinds of SWNT products:web-like substancea and thin films in large slices were obtained. Results of resonant Raman scattering measurements indicate that the SWNTs prepared have a wider diameter distribution and a larger mean diameter.Hydrogen uptake measurements of the two kinds of SWNT samples(both as prepared and pretreated) were carried out using a high pressure volumetric method,respectively.And a hydrogen storage capacity of 4 wt pct could be repeatedly achieved for the suitably pretreated SWMNTs,whicb indicates that SWNTs may be a promising hydrogen storge material.  相似文献   

7.
Individual single-wall carbon nanotubes (SWNTs) and double-wall carbon nanotubes (DWNTs) were suspended in water for optical studies using sodium-cholate and other surfactants. We used time-resolved photoluminescence (PL) spectroscopy to study the influence of tube chirality and diameter as well as of the environment on nonradiative decay in small diameter tubes. The studies provide evidence for PL from small diameter core tubes in DWNTs and for a correlation of nonradiative decay with tube diameter and exciton red shift as induced by interaction with the environment.  相似文献   

8.
Here we report Raman scattering studies of ropes of Single-walled carbon nanotubes (SWNTs) grown by a high CO pressure process. Five samples from five different batches were studied as a function of excitation wavelength. Three of these samples exhibited Raman spectra similar to that found for SWNTs made by pulsed laser vaporization of arc-discharge methods. The other two samples were found by Raman scattering to contain a significant fraction of tubes with diameter < 1.0 nm. These samples exhibited unusual spectra that, however, can be well understood within the existing models for the electronic and phononic states in SWNTs. Spectra recorded with 1064 nm for the sample having a significant fraction of smaller diameter tubes shows strong modes present between 500 and 1200 cm-1. We suggest these modes arise due to the enhancement of Raman cross-section for small diameter tubes.  相似文献   

9.
Flow-field flow fractionation (flow-FFF) is used to separate single wall carbon nanotubes (SWNTs) dispersed in aqueous medium by the use of DNA. Online measurements are made of SWNT concentration, molar mass, and size by using UV-vis absorption and multiangle light scattering (MALS). Separations are made of both unfractionated SWNTs and SWNT fractions made by use of size exclusion chromatography (SEC). The SEC fractions are well resolved by flow-FFF. SWNT hydrodynamic volume from calibrations with polymer latex particles in flow-FFF are compared to calibrations of hydrodynamic volume from the SEC fractions derived from dissolved polymers. Rod lengths of the SWNTs are calculated from online measurements of MALS and those are compared to rod lengths from hydrodynamic models based on latex sphere calibrations. Samples with varied sizes were prepared by fracturing SWNTs through extended sonication. Flow-FFF of these fractured samples shows very broad size distributions compared to the original SEC and flow-FFF fractions.  相似文献   

10.
Wang D  Chen L 《Nano letters》2007,7(6):1480-1484
Solubilization of single-walled carbon nanotubes (SWNTs) using noncovalently interacting polymer surfactants in aqueous media has opened up a new vista of SWNTs in biology and medicine. In many potential applications, it is desirable to control the dispersion or aggregation of SWNTs in solvents with external stimuli. Here we report two "smart" SWNT dispersions that respond to temperature and pH changes in poly(N-isopropylacrylamide) and poly-L-lysine solutions.  相似文献   

11.
Nowadays, stable colloidal dispersions with ultra-fine or nanosized particles are getting importance due to their higher activity. In this article, methods for the preparation of stable aqueous dispersions of zinc oxide (ZnO) were discussed. The quality of the dispersion was improved by capping with different types of surfactants say non-ionic, cationic, and anionic. Accordingly, Triton X 100, polyethylene glycol-6000 (both non-ionic), cetyltrimethylammonium bromide (cationic), and sodium dodecyl sulfate (anionic) were selected for the study. Effect of these surfactants on particle size of ZnO was followed through dynamic light scattering (DLS) studies and zeta potential measurements. Particle size analysis and zeta potential measurement indicated that ZnO dispersions stabilized with anionic surfactants (sodium dodecyl sulfate) showed better stability. Further, the effect of ultrasonication on particle size distribution was examined and optimized.  相似文献   

12.
Balci O  Kocabas C 《Nanotechnology》2012,23(24):245202
We have studied the high frequency performance limits of single-walled carbon nanotube (SWNT) transistors in the diffusive transport regime limited by the acoustic phonon scattering. The relativistic band structure of single-walled carbon nanotubes combined with the acoustic phonon scattering provides an analytical model for the charge transport of the radio frequency transistors. We were able to obtain the intrinsic high frequency performance such as the cut-off frequency and the linearity of the SWNT transistors. We have extended our model to include transistors based on arrays of SWNTs. The effect of electrostatic screening in a dense array of SWNTs on the cut-off frequency is studied.  相似文献   

13.
Alignment of densely packed single-walled carbon nanotubes (SWNTs) largely preserves the extraordinary electronic properties of individual SWNTs in the alignment direction, while in transverse direction the films are very resistive due to large energy barriers for tunneling between adjacent SWNTs. We demonstrate that chromium atoms inserted between the sidewalls of parallel SWNTs effectively coordinate to the benzene rings of the nanotubes via hexahapto bonds that preserve the nanotube-conjugated electronic structure and serve as a conduit for electron transfer. The atomically interconnected aligned SWNTs exhibit enhanced transverse conductivity, which increases by ~2100% as a result of the photoactivated organometallic functionalization with Cr. The hexahapto mode of bonding the graphitic surfaces of carbon nanotubes with transition metal atoms offers an attractive route to the reversible chemical engineering of the transport properties of aligned carbon nanotube thin films. We demonstrate that a device fabricated with aligned SWNTs can be reversibly switched between a state of high electrical conductivity (ON) by light and low electrical conductivity (OFF) by applied potential. This study provides a route to the design of novel nanomaterials for applications in electrical atomic switches, optoelectronic and spintronic devices.  相似文献   

14.
Stable, homogeneous, aqueous dispersions of single-walled carbon nanotubes (SWNTs) are prepared by nonspecific physical adsorption of surfactants enhanced by sonication. Upon centrifugation, supernatant and precipitate phases are obtained. The initial weights of the SWNTs and the surfactant are divided between these two phases, and the respective SWNT concentration in each phase is unknown. The focus of this work is on the determination of the true concentration of raw, exfoliated HiPCO SWNTs in the supernatant phase. A UV-visible absorption-based approach is suggested for a direct measurement of the SWNT and the surfactant concentration in the supernatant. UV-visible absorbance spectra of SWNTs-surfactant dispersions and surfactants alone reveal that the intensity of a certain peak, attributed to the pi-plasmon resonance absorption, is unaffected by the presence of most surfactants. A calibration plot is then made by monitoring the intensity of the peak as a function of the true concentration of the exfoliated SWNTs. Thus, we are able to determine the unknown concentration of surfactant-dispersed HiPCO SWNTs in the supernatant solution, simply by measuring its optical absorbance. Moreover, we can now calculate the surfactant efficiency in dispersing SWNTs. Cryogenic-transmission electron microscopy and thermogravimetric analysis techniques are used for the characterization of these dispersions and to complement the UV-visible measurements.  相似文献   

15.
We present simultaneous near-field photoluminescence (PL) and Raman imaging of single-walled carbon nanotubes (SWNTs) with a spatial resolution better than 15 nm. Highly localized excitation is used to visualize the spatial extent of the contributing excited states. For SWNTs on glass, we typically observe highly confined PL from short segments of about 20 nm in length. The PL from micelle-encapsulated SWNTs on mica is extended along the tube up to several hundreds of nanometers. We find that near-field enhancement is much stronger for photoluminescence than for Raman scattering, an observation that is explained by the low intrinsic quantum yield of SWNTs.  相似文献   

16.
Single-wall carbon nanotubes (SWNTs) provide a reactive environment in presence of microwave radiation because they absorb the energy that leads to fast, direct heating. This makes composite formation in a microwave reactor highly feasible where the SWNTs serve as the nuclei for polymerization. In this article, we demonstrate rapid, in situ synthesis of poly(methyl methacrylate) (PMMA) and polyvinylpyrrolidone (PVP) nanocomposites using their respective monomers. The key to their success was the use of the highly dispersible SWNTs, which had strong interactions with the monomer and the polymer. Rapid synthesis within a few minutes was possible, which led to remarkable nano-scale dispersion of nanotubes in polymer matrix by encapsulation of the already dispersed SWNTs before the latter could agglomerate. The molecular weight and polydispersity of the polymers remained unchanged in the presence of the SWNTs. The addition of 0.5 wt% SWNT to PMMA enhanced its thermal stability (as measured by the initial degradation temperature) by 37 °C and the hardness by around 50%. On the other hand, with the addition of up to 4 wt% SWNT, the PVP showed no enhancement in thermal stability but its hardness increased by 250–300%. Finally, this technique is practical because it reduces time, cost, and energy requirements.
Somenath MitraEmail:
  相似文献   

17.
Zheng G  Li Q  Jiang K  Zhang X  Chen J  Ren Z  Fan S 《Nano letters》2007,7(6):1622-1625
We report hydrogen plasma treatment results on converting the metallic single-walled carbon nanotubes to semiconducting single-walled carbon nanotubes. We found that the as-grown single-walled carbon nanotubes (SWNTs) can be sorted as three groups which behave as metallic, as-metallic, and semiconducting SWNTs. These three groups have different changes under hydrogen plasma treatment and successive annealing process. The SWNTs can be easily hydrogenated in the hydrogen plasma environment and the as-metallic SWNTs can be transformed to semiconducting SWNTs. The successive annealing process can break the C-H bond, so the conversion is reversible.  相似文献   

18.
We demonstrate that cadmium (Cd) can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency. The Cd nanocatalysts, prepared using a diblock copolymer templating method, were uniformly spaced over a large deposition area with an average diameter of 1.9 nm and narrow size distribution. By using the normal-heating and fast-heating method, random and horizontally aligned arrays of SWNTs can be generated. The density of the SWNTs can be altered by the chemical vapor deposition conditions. The morphology and microstructure of the SWNTs characterized by scanning electron microscopy, Raman spectroscopy, atomic force microscopy, and high-resolution transmission electron microscopy revealed that the grown nanotubes do not have carbonaceous particles and have good crystallinity. In addition, after careful check with superlong nanotubes 735 out of 790 nanotubes were found to be deposited with Ag (93%) and only 7% SWNTs without Ag deposition. While for superlong SWNT arrays from Fe, 32% long SWNTs without Ag deposition was found, the high percentage of SWNTs with Ag deposition from Cd indicates that the SWNTs have better conductivity and better structural uniformity with less defects.  相似文献   

19.
This paper presents a simple, highly efficient method for analyzing single-walled carbon nanotube (SWNT) bundles based on (1) ultrasound-assisted solubilization/dispersion of SWNTs in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, (2) encapsulation of the nanotubes in sodium dodecyl sulfate micelles, and (3) analysis by capillary electrophoresis. The process by which SWNTs disperse in the ionic liquid was studied by Raman spectroscopy. No degradation of SWNTs was observed under mild sonication conditions. The shape and position changes observed in the Raman spectral bands for the nanotubes are ascribed to debundling and interaction with the ionic liquid. Separation of solubilized SWNTs was accomplished by using a 50 mM formic acid solution at pH 2.0 as background electrolyte and a potential of -10 kV. Under these conditions, separation was completed within only 4 min. Eighteen peaks for SWNTs were identified in the analysis of commercial SWNT bundles. The two types of bundles studied exhibited distinct, highly characteristic electrophoretic profiles which could be used to control SWNTs purity.  相似文献   

20.
Novel covalently porphyrin functionalized single-walled carbon nanotubes (SWNTs) were synthesized using carboxylic group functionalized carbon nanotubes (o-SWNTs) with meso-aniline substituted porphyrin. The structure and morphology of this SWNT nanohybrid material were fully characterized with FTIR, Raman, UV-Vis-NIR spectra as well as TGA and TEM measurements. The energy transfer efficiency from porphyrin to SWNTs and porphyrin fluorescence quenching mechanism were studied by means of steady state fluorescence and time-resolved fluorescence measurement. The fast and efficient electron transfer occurring in this nanohybrid illustrates that they can be utilized as a good candidate for light harvesting materials in molecular photonic devices and solar energy utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号