首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在钎焊时间10 min,钎焊温度820~900℃的条件下,采用AgCu钎料对C/C复合材料和TC4进行了钎焊试验.利用扫描电镜、X射线衍射分析仪、EDS能谱分析仪对接头的界面组织及断口形貌进行了研究.结果表明,C/C复合材料与TC4连接接头的界面结构为C/C复合材料/TiC C/TiCu/Ag(s.s) Cu(s.s) Ti3Cu4/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu Ti(s.s)/TC4.由压剪试验测得的接头抗剪强度可知,在钎焊温度850 ℃,保温时间10 min的钎焊条件下,接头获得的最高抗剪强度达到38 MPa.接头的断口分析表明,接头的断裂位置与被连接处碳纤维方向和钎焊温度有关.当碳纤维轴平行于连接面时,断裂发生在复合材料中.当碳纤维轴垂直于连接面时,若钎焊温度较低,断裂发生在C/C复合材料/钎料界面处;若钎焊温度较高,断裂主要发生在C/C复合材料/钎料界面和钎料/TC4界面处.  相似文献   

2.
采用活性钎料TiZrNiCu对TiBw/TC4钛合金和C/C复合材料进行了钎焊连接,借助SEM,EDS,XRD等分析手段研究了钎焊工艺参数对接头界面组织结构的影响.结果表明,采用TiZrNiCu钎料可以实现对两种材料的连接,接头典型的界面结构为:C/C复合材料/TiC+(Ti,Zr)2(Cu,Ni)/Ti(s,s)+(...  相似文献   

3.
采用胶接辅助钎焊方法,以TiH_2粉为活性元素源,环氧树脂为粘性载体,Ag-Cu共晶合金为钎料,Cu箔为应力缓冲层材料,实现了C_f/C复合材料与纯铜的钎焊连接,结果表明,接头界面处产生TiC,TiCu,Ag(s,s),Cu(s,s)等反应产物,其结构可表示为(C_f/C)/TiC+Ag(s,s)+Cu(s,s)+TiCu/Cu。通过钎焊工艺试验得出,在930℃保温25 min钎焊条件下接头的抗剪强度达到最大值30 MPa。  相似文献   

4.
试验采用加入了碳纳米管(carbon nanotubes,CNTs)的AgCu4.5Ti + xCNTs (x为质量分数,%)复合钎料(简称AgCuTiC复合钎料),实现了TC4钛合金与C/C复合材料的真空钎焊连接. 通过SEM,EDS等分析手段确定了在CNTs含量为0.2%、钎焊温度为880 ℃、保温时间为20 min时接头的典型界面组织为TC4/扩散层/Ti2Cu/TiCu/Ti3Cu4/TiCu4/TiC + TiCu2 + Ag(s.s) + Cu(s.s)/Ti3Cu4/TiCu4/TiC/C/C复合材料;研究了CNTs含量对接头组织与性能的影响. 结果表明,随着CNTs含量的增加,钎缝宽度变化呈下降趋势,界面组织细化,界面中的Ti3Cu4与TiCu4脆性化合物的含量降低、TiC与TiCu2化合物的含量增加;接头的抗剪强度呈先上升后下降的趋势变化;当CNTs含量为0.4%时抗剪强度最高,达到44 MPa;CNTs的加入可使界面组织得到细化,有利于缓解钎缝中心区域与两侧母材之间存在的由于热膨胀系数不匹配而形成的较大残余应力,有效地提高了接头的抗剪强度.  相似文献   

5.
采用AgCu-4.5Ti钎料直接钎焊TC4钛合金与SiO2复合材料,研究了接头界面组织结构及形成机理,分析了不同工艺参数下界面变化对接头抗剪强度的影响。研究表明:接头界面典型结构为SiO2复合材料/TiSi2/Cu4Ti3+Cu3Ti3O/ Ag(s,s)+Cu(s,s)/TiCu/Ti2Cu/α,β-Ti/TC4;钎焊温度的升高可促进两侧母材界面反应层厚度的增加,同时钎缝中部的AgCu共晶组织消失,化合物相增多;随着接头界面结构的变化,接头抗剪强度表现出先升高后降低的趋势:当钎焊温度为850 ℃,保温10 min时,接头室温最高抗剪强度达到7.8 MPa  相似文献   

6.
TiC增强Cf/SiC复合材料与钛合金钎焊接头工艺分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti-(Ti+C)混合粉末作钎料,在适当的工艺参数下真空钎焊Cf/SiC复合材料与钛合金,利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验检测接头力学性能.结果表明,钎焊后钎料中的钛与Cf/SiC复合材料发生反应,接头中主要包括TiC,Ti3SiC2,Ti5Si3,Ag,TiCu,Ti3Cu4和Ti2Cu等反应产物,形成石墨与钛原位合成TiC强化的致密复合连接层.TiC的形成缓解了接头的残余热应力,并且提高了接头的高温性能.接头室温、500℃和800℃高温抗剪强度分别达到145,70,39 MPa,明显高于Cf/SiC/Ag-Cu-Ti/TC4钎焊接头.  相似文献   

7.
Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金   总被引:1,自引:0,他引:1       下载免费PDF全文
采用新型Ag-Cu+WC复合钎料进行ZrO2陶瓷和TC4合金钎焊连接,探究了接头界面组织及形成机制,分析了钎焊温度对接头界面结构和力学性能的影响. 结果表明,接头界面典型结构为ZrO2/TiO+Cu3Ti3O/TiCu+TiC+W+Ag(s,s)+Cu(s,s)/TiCu2/TiCu/Ti2Cu/TC4. 钎焊过程中,WC颗粒与Ti发生反应,原位生成TiC和W增强相,为Ti-Cu金属间化合物、Ag基和Cu基固溶体提供了形核质点,同时抑制了脆性Ti-Cu金属间化合物的生长,优化了接头的微观组织和力学性能. 随钎焊温度的升高,接头反应层的厚度逐渐增加,WC颗粒与Ti的反应程度增强. 当钎焊温度890 ℃、保温10 min时,复合钎料所得接头抗剪强度达到最高值82.1 MPa,对比Ag-Cu钎料所得接头抗剪强度提高了57.3%.  相似文献   

8.
以Ag—Cu—Ti箔状钎料对钛合金TCA和不锈钢1Cr18Ni9Ti进行了真空钎焊。采用扫描电镜、能谱分析、金相显微镜和x一射线衍射等分析测试手段对钎焊过程中所形成的反应产物和接头界面结构进行了分析。结果表明:接头界面形成了Ti(s.s)、AS(s.s)、Ti—Cu金属问化合物等反应产物。连接温度较低(920℃)时,界面结构依次为1Cr18Ni9Ti/TiCu/Ag(s.s)+少量Ti2cu/%2cu/Ti2cu+Ti(s.s)/TC4;连接温度升高(960oC)时,界面结构为1Crl8Ni9Ti/Ti:Cu/Ti:Cu+矩(s.s)/Ti2Cu/Ti2Cu+Ti(s.s)/TCA;连接温度较高(1000oC)时,界面结构为1Crl8Ni9Ti/TiCu2/TiCu/Ti2Cu/Ti:Cu+Ti(s.s)/TC4。提高钎焊温度与延长保温时间对钎焊接头界面组织结构有相似的影响,各反应相、反应层逐渐长大,金属问化合物反应相所占比例增大,而Ag(s.s)组织所占的比例变得更小,这种趋势随着焊接工艺参数的提高更加明显。  相似文献   

9.
刘多  张丽霞  何鹏  冯吉才 《焊接学报》2009,30(2):117-120
分别采用活性钎料AgCuTi和TiZrNiCu对SiO2陶瓷和TC4钛合金进行了钎焊连接,使用扫描电镜和X射线衍射等手段对接头的界面组织和力学性能进行了研究.结果表明,采用两种钎料均能够实现对SiO2陶瓷和TC4钛合金的连接;SiO2/TiZrNiCu/TC4接头的典型界面为SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr)+Ti2O+TiZrNiCu/Ti基固溶体/TiZr-NiCu+Ti基固溶体+Ti2(Cu,Ni)/TC4;SiO2,AgCuTi/TC4接头的典型界面为SiO2/TiSi2+Ti4O7/TiCu+Cu2Ti4 O/Ag基固溶体+Cu基固溶体/TiCu/Ti2Cu/Ti+Ti2 Cu/TC4.当钎焊温度为880℃和保温时间为5 min时,SiO2/TiZrNiCu/TC4接头的最高抗剪强度为23 MPa;当钎焊温度为900℃和保温时间为5 min时,SiO2/AgCuTi/TC4接头的最高抗剪强度为27MPa.  相似文献   

10.
C_f/SiC复合材料与钛合金Ag-Cu-Ti-C_f复合钎焊   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti-Cf(Cf:碳纤维)复合钎料作中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与钛合金,利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验检测接头力学性能.结果表明,钎焊时复合钎料中的钛与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti3SiC2,Ti5Si3和少量TiC化合物的混合反应层.复合钎料中的铜与钛合金中的钛发生互扩散,在连接层与钛合金界面形成不同成分的Cu-Ti化合物过渡层.钎焊后,形成碳纤维强化的致密复合连接层.碳纤维的加入缓解了接头的残余热应力,Cf/SiC/Ag-Cu-Ti-Cf/TC4接头抗剪强度明显高于Cf/SiC/Ag-Cu-Ti/TC4接头.  相似文献   

11.
采用化学分离与高频红外吸收碳硫分析仪相结合测定碳化钛粉中的总碳、游离碳,成功地解决了传统的重量法对于低含量碳测定存在较大的误差缺陷,同时使测定时间上大大缩短。该方法的准确性高,分析结果重现性好,同时也扩大了高频红外吸收碳硫分析仪的适用范围。  相似文献   

12.
The tensile properties and fracture behavior of different carbon nanotube (CNT)-grafted polyacrylonitrile-based (T1000GB) single carbon fibers were investigated. Grafting of CNTs was achieved via chemical vapor deposition (CVD). When Fe(C5H5)2 (also applied via CVD) was used as the catalyst, the tensile strength and Weibull modulus of the carbon fibers were improved, possibly due to the growth of dense CNT networks on the carbon fibers, which may have led to a reduction in the number of strength-limiting defects. Separately, at lower concentrations of an Fe(NO3)3·9H2O catalyst in ethanol, which was applied via dipping, the tensile strength of CNT-grafted fibers was nearly identical to that of the as-received fibers, although the Weibull modulus was higher. For higher concentrations of the Fe(NO3)3·9H2O catalyst, however, the tensile strength and the Weibull modulus were lower than those for the as-received material. Although the density of the CNT network increased with the concentration of the Fe(NO3)3·9H2O catalyst in the ethanol solution, heating of the ethanolic Fe(NO3)3·9H2O catalyst solution generated nitric acid (HNO3) due to decomposition, which damaged the fiber surfaces, resulting in an increase in the number of flaws and consequently a reduction in the tensile strength. Therefore, the tensile strength and Weibull modulus of CNT-grafted carbon fibers vary due to the combination of these effects and as a function of the catalyst concentration.  相似文献   

13.
C/C复合材料表面TaC涂层的制备和生成机制   总被引:1,自引:0,他引:1  
报道了一种在C/C复合材料基体上制各抗烧蚀TaC涂层的新方法.采用红外光谱、XRD及SEM表征了生成TaC涂层的Ta源:TaO2F·rH2O·TaF5.采用SEM观察了不同温度下转变生成的TaC涂层的形貌.在1200℃高温热处理,TaC涂层形貌为细颗粒状,在1800℃高温热处理后,TaC涂层为柱状晶.TaC的生成机制为:TaO2F·rH2O·TaF5高温分解凝聚生成的Ta2O5沉积在C/C复合材料基体表面,碳原子在Ta2O5中扩散反应生成TaC,TaC涂层形貌可由生成Ta2O5的凝聚成核理论解释.  相似文献   

14.
采用自加热化学液相沉积法制备碳/碳复合材料。考察了不同材料在不同温度、时间下的氧化失重率,研究了碳毡体密度与碳/碳复合材料氧化行为的关系。探讨了氧化温度和氧化时间对材料氧化侵蚀的影响机理。结果表明,毡体密度大的碳/碳复合材料具有更好的抗氧化性。扫描电镜观察材料氧化前后的显微形貌发现,基体碳更易被氧化。  相似文献   

15.
The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4′-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.  相似文献   

16.
为改善碳微球(CMSs)/碳纳米管(MWNTs)与聚对苯二甲酸乙二醇酯(PET)基体相容性,采用原位聚合法对CMSs和MWNTs分别进行表面修饰,制成核壳型结构的PET@CMSs(PCMSs)和PET@MWNTs(PMWNTs),并通过熔融共混法制备了PCMSs/PMWNTs/PET复合材料,对其阻燃性能进行探讨。使用TEM、SEM、FTIR、TGA、CONE等测试手段,表征了PCMSs与PMWNTs的结构及与PET基体的相容性,并测试了PCMSs/PMWNTs/PET的力学性能、阻燃性能、热稳定性和燃烧行为等。结果表明,与修饰前的CMSs/MWNTs相比,PCMSs/PMWNTs与PET基体具有更好的分散相容性,在PCMSs\PMWNTs添加的质量分数为1%,PCMSs与PMWNTs的质量比为1∶2时,PCMSs/PMWNTs/PET比CMSs/MWNTs/PET的抗拉强度提高的最大,可达26.1%;与纯PET、CMSs/MWNTs/PET相比,PCMSs/PMWNTs作为阻燃材料添加到PET中,具有较好的热稳定性、且有效延长了PET的点燃时间、增大FPI指数,从而降低火灾危险性,阻燃效果较好,其LOI值为28.1%,熔滴数为3 d/min,UL-94阻燃级别可达到V-0级。  相似文献   

17.
杨惠升 《铸造技术》2005,26(11):1068-1069
从筛板结构及材质两方面介绍了所开发的高碳合金钢-碳素钢复焊焦炭筛板,该筛板由铸造筛条和低碳结构钢框架焊接而成.筛条上有若干梳齿孔,焊接时呈阶梯形状搭接,有一定的高度差,筛条材质为高碳低合金结构钢,采用精密铸造工艺生产.经实际生产使用证明,该种筛板防堵性能良好,用于筛分焦炭,使用寿命与现有筛板相比可提高2~4倍.  相似文献   

18.
碳钢渗氮过程中碳原子的迁移   总被引:1,自引:1,他引:0  
对45,T8,T13钢试样进行气体渗氮。应用X-ray,SEM,TEM研究了渗氮过程中碳原子的迁移,结果表明:由渗氮试样的碳浓度分布曲线可精确确定渗氮层深。并对碳迁移机制进行了初探。  相似文献   

19.
Carbon cartridge     
《Metal Finishing》2002,100(6):134
  相似文献   

20.
一种新型的碳纤维和碳纳米管化学镀镍工艺   总被引:5,自引:0,他引:5       下载免费PDF全文
碳纤维是最重要的复合材料增强体之一,而碳纳米管比碳纤维具有更好的力学性能,对他们的表面改性将会对复合材料性能有很大影响。试验实现了一种对碳纤维和碳纳米管通用的化学镀镍工艺。通过对基体较好的预处理,在基体上成功地完成了化学镀镍并且较好的控制了镀层成分。同时还探讨了施镀温度、pH值和搅拌方式等对镀层的影响,试验发现pH值控制在9~10之间,温度控制在70℃附近并采用氮气搅拌可以获得较满意的施镀效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号