首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应力与相变相互作用对马氏体淬火残余应力的影响   总被引:4,自引:0,他引:4  
本文进行了有关钢在马氏体淬火过程中应力与相变相互作用的实验研究,在此基础上提出了一种预测钢的马氏体淬火残余应力的较完整的数学模型。根据实测的材料参数用有限元方法对26Cr2Ni4MoV钢圆筒形试件的淬火过程进行了计算分析,着重考察了相变塑性和应力诱导相变对残余应力形成的影响。结果表明,由本模型给出的残余应力预测值与实测值吻合较好,而不考虑相变塑性的模型实际上是不适用的,忽略应力诱导相变则倾向于在较大程度上低估淬火后的残余应力  相似文献   

2.
悬臂梁法测量不锈钢基体上铜膜和银膜残余应力   总被引:1,自引:0,他引:1  
用悬臂梁法研究了不锈钢4Cr13基体上的Cu膜和Ag膜的平均残余应力和残余应力分布。结果表明,Cu膜和Ag膜的平均残余应力和分布残余应力随膜厚的增加而急剧减小。2种膜生长过程中界面应力很大,而生长应力很小。Cu膜在厚度较小时,残余应力值很大,超过了铜块材的断裂强度。  相似文献   

3.
硬质合金基体上金刚石膜的XRD研究   总被引:1,自引:0,他引:1  
采用直流等离子体射流CVD法在硬质合金 (WC + 8wt.%Co)基体上生长金刚石膜 ,主要借助XRD分析方法对CVD金刚石膜的微观结构和残余应力进行了研究 ,探讨了CVD金刚石膜中残余应力的形成及其对金刚石膜粘附性能的影响。研究结果表明 :CVD金刚石膜中通常存在GPa数量级的残余压应力 ,膜中存在适中的残余压应力 ,有利于CVD金刚石膜获得最佳的粘附性能  相似文献   

4.
Shape memory NiTi-based thin films approximately 2 μm thick were deposited onto Si (100) substrates at room temperature by simultaneous DC magnetron sputter deposition from separate elemental Ni and Ti targets. The effect of composition on film structure, surface morphology, transformation temperature and mechanical behavior was studied using variable temperature X-ray diffraction, atomic force microscopy, electrical resistivity, and nanoindentation. The films showed the expected shape memory and superelasticity behavior corresponding to the different film compositions, comparable with bulk properties. The transformation from the low temperature martensitic phase to the high temperature parent phase takes place above room temperature in Ti-rich and near-equiatomic films, and below room temperature in Ni-rich films. Mechanical properties of films investigated at room temperature by a series of nanoindentations at mN loads (indentation depth < 200 nm) with a spherical indenter demonstrate superelasticity in Ni-rich material and martensitic deformation for Ti-rich and near-equiatomic compositions.  相似文献   

5.
The crystallization process of as-deposited Ti–Ni–(10.8–29.5)Zr amorphous thin films was investigated. The Ti–Ni–Zr as-deposited films with a low Zr content exhibited a single exothermic peak due to the crystallization of (Ti,Zr)Ni with a B2 structure. In contrast, a two-step crystallization process was observed in the Ti–Ni–Zr thin films with a high Zr content. Shape memory behavior of Ti–Ni–Zr thin films heat treated at 873–1073 K was investigated by thermal cycling tests under various stresses. The martensitic transformation start temperature increased with increasing Zr content until reaching the maximum value, then decreased with further increasing Zr content. The inverse dependence of transformation temperature on Zr content in the thin films with a high Zr content is due to the formation of a NiZr phase during the crystallization heat treatment. The formation of the NiZr phase increased the critical stress for slip but decreased the recovery strain.  相似文献   

6.
《Acta Materialia》2003,51(11):3121-3130
After heat treatment, there may exist different types of precipitates in Ti-rich thin films, i.e. spherical Ti2Ni precipitates and plate-like Guinier–Preston (GP) zones. While the Ti2Ni precipitates impede the shear deformation of martensitic transformation, the GP zones do not stop both the shear deformation of martensitic transformation and the twinning shear of (001) deformation twin in the martensite phase. An elastic deformation model of the GP zone during martensitic transformation and subsequent deformation in the martensite was built up. The model can explain the GP zones-related shape memory properties self-consistently. These results supply microstructural explanation for the previous results that Ti-rich Ti–Ni thin films with GP zones show a large transformation strain despite the presence of the GP zones, while thin films with Ti2Ni precipitates show a relatively small transformation strain.  相似文献   

7.
TiNiCu films were deposited on a (100) type Si substrates by co-sputtering of TiNi and Cu targets at room temperature, and then post-annealed at 450 °C for crystallization. Significant surface relief due to martensitic transformation occurred on the film surface after cooling, and variations in surface relief morphology (the size and density of martensite crystals) have been quantified with atomic force microscopy. Energy dispersive X-ray analysis showed that the surface relief morphological difference in the TiNiCu films is due to the change in composition. It was proposed that the crystallization of the amorphous thin film during annealing behaved differently with chemical composition, which in turn induced fluctuations in phase transformation temperatures at various regions, as confirmed by differential scanning calorimeter measurements.  相似文献   

8.
Most steel gears are carburized and quenched prior to service to obtain the desired specific strength (σ/ρ) and hardness requirements. Use of carburization and quenching of steel gears creates a compressive residual stress on the carburized surface, which is beneficial for improving both bending and contact fatigue performance. Also, higher carbon content in the carburized surface decreases the starting temperature for formation of the martensitic phase and delaying the martensitic transformation at the part surface during the quenching hardening process. During the martensite phase formation, the material volume expands. The delayed martensitic transformation, coupled with the associated delayed volume expansion, induces residual compressive stress on the surface of the quenched part. The carburized case depth and distribution of carbon affect both the magnitude and the depth of the resulting residual compressive stress. In this article, the effect of carbon distribution on the residual stress in a spur gear is presented and discussed using finite element modeling to understand the intrinsic material mechanics contributing to the presence of internal stress. Influence of the joint on thermal gradient and the influence of phase transformation on the development of internal stresses are discussed using results obtained from modeling. The residual stress arising due to heat treatment is imported into single-tooth bending and dynamic contact stress analysis models to investigate the intrinsic interplay among carbon case depth, residual stress, bending load, and torsional load on potential fatigue life. Three carburization processes, followed by oil quenching, are examined. A method for designing minimum case depth so as to achieve beneficial residual stresses in gears subjected to bending and contact stresses is suggested.  相似文献   

9.
Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS).It is essential, however, to have good uniformity in both chemical composition and thickness to realize its full potential as an active component of MEMS devices.Electron beam evaporation technique was employed in this study to fabricate the thin films of Ti-Ni alloy on different substrates.The targets used for the evaporation were first prepared by electron beam melting.The uniformity of composition and microstructure of the thin films were characterized by electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM).The mechanical property of the thin films was evaluated by the nano-indentation test.The martensitic transformation temperature was measured by differential scanning calorimetry (DSC).It is confirmed that the chemical composition of deposited thin films is identical to that of the target materials.Furthermore, results from depth profiling of the chemical composition variation reveal that the electron beam evaporation process yields better compositional homogeneity than other conventional methods such as sputtering and thermal evaporation.Microstructural observation by TEM shows that nanometer size precipitates are preferentially distributed along the grain boundaries of a few micron size grains.The hardness and elastic modulus of thin films decreases with an increase in Ti contents.  相似文献   

10.
从力学角度出发,以LF6铝合金薄板平面内环焊缝的焊接为例,对其焊接残余应力和变形的特点进行了探讨。采用非线性有限元技术,对常规焊接条件下温度场和应力场进行了模拟,结合弹性稳定性理论对环焊缝焊接产生的特殊变形规律进行了研究。数值模拟结果表明,在环焊缝焊接过程中形成了与常规对接焊完全不同的焊接热循环过程,残余应力状态复杂;焊缝外侧的压应力超过了失稳变形极限,造成了铝合金薄板的失稳变形。  相似文献   

11.
Abstract

The effect of welding parameters on residual stress induced by shrinkage of weldment and metallurgical phase transformation in type 420 martensitic stainless steel has been investigated. In this study, type 1018 low carbon steel was adopted as the base metal and type 420 martensitic stainless steel was used for the filler metal during submerged arc welding. The thermal cycles at various locations were recorded and dilatometry was used to examine the martensite phase transformation temperatures. The experimental results show that the residual stress increased with the heat input during welding. Using a higher welding heat input increased the amount of heat going into the weldment and elevated the martensite phase transformation temperature. Residual stresses could not be significantly reduced by increasing preheat (interpass) temperature while welding. Using higher preheat temperature conditions could elevate the equilibrium temperature and the martensite phase transformation temperature and increased the heat input to the weldment.  相似文献   

12.
1. IntroductionTiOz thin films have excellent properties sucl1 as l1igh ref1actitre il1dex, outstal1diugoptical tra11sl11ittallce, high dielectric constant and physical chemical stabilityll'2]. Recently',the TiO2 thi1l films have drawn more attel1tions oll photocatalysis, optical coating, al1dsolar cell fab.ication[3'4l. In this work we deposited Ti thin film on glass substrate b}-nlagl1etroll sputterillg lllethod and allllealing Ti tl1in fi1l11 to fOrlll TiO2 tl1ill fi1m.2. ExperimelltalT…  相似文献   

13.
Spontaneous delamination of thin stainless steel films on Si{100} wafers is reported. The films were deposited using an ion beam technique and were 0.5 μm thick with a residual compressive stress of 2.2 GPa. Analysis of blisters in spontaneously delaminated films using simple models gives a satisfactory estimate of the residual stress. The possibility of utilizing the buckling patterns to determine the residual stress state in stainless steel films on Si substrates is then evaluated.  相似文献   

14.
在滚动接触疲劳试验机上,对不同残余奥氏体含量的18Cr2Nj4WA 钢制成的滚轮试样进行了试验.试验结果表明,残余奥氏体含量商的试样比含量低的试样具有较好的接触疲劳性能.认为奥氏体内超细团粒的出现,形成微观双相组织,可能是提高接触疲劳抗力很重要的因素.此外,形变诱发马氏体相变及残余应力的增加等对接触疲劳抗力的提高,也起一定的作用.  相似文献   

15.
The hardness and fatigue strength achieved by strain hardening are normally noticeable lower than those attained by thermal or thermochemical heat treatments. Strain or deformation induced martensitic transformation of residual austenite can increase the strength achieved by mechanical surface hardening processes considerably. In this paper, an approach is presented where workpieces with a high content of metastable austenite are used for hardening the surface layer. The microstructure has to be sufficiently stable, in order to ensure that the material can be machined without being changed by strain induced transformation of the residual austenite. After machining, high Hertzian contact stresses are introduced by deep rolling, so that a strain induced martensitic transformation of the residual austenite takes place. At the same time deep rolling produces the surface finish of the part. By this method, a surface hardening without a heat treatment process within the production line can be realized. A conceivable use of this method could be the production of bearings or guideways.  相似文献   

16.
Both sputtering conditions and crystallizing temperatures have great influence on the microstructures and phase transformation characteristics for TislNi44Cus. By means of the resistance-temperature measurement, X-ray diffraction and atomic fore microscopic study, the results indicate that the transformation temperatures of the thin films increase and the “rock candy“ martensitic relief is more easily obtained with promoting the sputtering Ar pressure, sputtering power, orcrystallizing temperature. However, when sputtering Ar pressure, sputtering power, or crystallizing temperature are lower, a kind of “chrysanthemum“ relief, which is related with Ti-rich GP zones, is much easier to be observed. The reason is that during crystallization process, both of the inherent compressive stresses introduced under the condition of higher sputteringpressure or higher crystallizing temperature are helpful to the transition from GP zones to Ti2(NiCu) precipitates and the increase of the transformation temperatures. The addition of copper to substitute for 5 96 nickel in mole fraction can reduce the transformation hvsteresis width to about 10 - 15 ℃.  相似文献   

17.
对六价镀铬的工艺进行研究,在45℃、电流密度为15 A·dm-2时电沉积出光亮平整、无缺陷的铬膜.在此基础上在纯铁基体上电沉积制备出一系列不同厚度的铬薄膜,并对其残余应力进行测量和研究.结果表明:Cr膜的平均残余应力和分布残余应力均为拉应力,由于Cr膜在较薄时残余应力的骤降,可判断出其残余应力主要来自于Cr膜的界面应力,与基于Thomas-Fermi-Dirac-Cheng(TFDC)电子理论的判断结果相一致.  相似文献   

18.
The martensitic transformation is a special form of phase transformation that is not associated with the conventional temperature-dependent parameters: the number of centers and the crystal growth rate. The internal stresses are important for this transformation. How can we define the martensitic transformation? Possibly as follows: “The martensitic transformation is a diffusionless phase transformation that is induced by the stresses.” The stream of studies devoted to the martensitic transformation is not abating, and each author often has his own point of view. But they all contribute very little to clarification of the nature of this phenomenon and, unfortunately, even less to their use in practice; for example, for regulation of the kinetics of the transformation. We shall present two articles that are devoted to the profound causes and subtle characteristics of the martensitic transformation.  相似文献   

19.
《Acta Materialia》1999,47(14):3869-3878
A semi-empirical formula is proposed to assess residual stresses in SiO2 and Cr thin films deposited on Si wafers using Vickers indentation fracture tests. The formula indicates that the ratio of the indentation load to the cubic of square root of the crack length is linearly proportional to the reciprocal of the square root of the crack length, the magnitude of the residual stress, and the film thickness. Wafer curvature measurements are conducted to calibrate the dimensionless parameters in the proposed formula. The experimental results agree well with the theoretical prediction and the residual stresses in the SiO2 and Cr thin films are evaluated to be −358 and 1095 MPa, respectively.  相似文献   

20.
Transmutation of nuclear waste is currently being considered to transform long-lived isotopes to species with relatively short half-lives and reduced radioactivity through capture and decay of minor actinides and fission products. This process is intended for geologic disposal of spent nuclear fuels for shorter durations in the proposed Yucca Mountain repository. The molten lead-bismuth-eutectic will be used as a target and coolant during transmutation, which will be contained in a subsystem vessel made from materials such as austenitic (304L) and martensitic (EP-823 and HT-9) stainless steels. The structural materials used in this vessel will be subjected to welding operations and plastic deformation during fabrication. The resultant residual stresses cannot be totally eliminated even by stress-relief operations. Destructive and nondestructive techniques have been used to evaluate residual stresses in the welded and cold-worked specimens. Results indicate that tensile residual stresses were generated at the fusion line of the welded specimens made from either austenitic or martensitic stainless steel, with reduced stresses away from this region. The magnitude of residual stress in the cold-worked specimens was enhanced at intermediate cold-reduction levels, showing tensile residual stresses in the austenitic material while exhibiting compressive stresses in the martensitic alloys. Comparative analyses of the resultant data obtained by different techniques revealed consistent stress patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号