首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于变宽直方图的无线传感器网络异常数据检测算法   总被引:2,自引:0,他引:2  
数据的准确性是衡量无线传感器网络(WSN)性能的重要指标,异常数据检测是无线传感器网路面临的关键问题和主要挑战。提出了一种基于变宽直方图的异常数据检测算法,通过数据聚合的方式将网络中的动态感知数据聚合成变宽的直方图来准确检测出异常数据,同时避免不必要的数据传输。对算法的性能进行了理论分析,并基于真实大规模无线传感器网络系统数据进行了实验评估,结果表明算法具有很高的准确率,并有效降低了网络通信开销。  相似文献   

2.
针对无线传感器网络的离群点检测算法由于没有充分考虑数据的时空关联性和网络的分布特性,导致检测精度低、通信量大和计算复杂度高等局限,提出了基于时空关联的分布计算与过滤的在线离群点检测算法。该算法在各传感器节点上利用传感器读数的时间关联性生成候选离群点,并利用空间关联性对候选离群点进行过滤得到局部离群点,最终将所有传感器节点上的局部离群点集中到sink节点上获得全局离群点。利用时空关联性提高了检测精度,利用分布计算与过滤减少了通信量和计算量,理论分析和实验结果均表明该算法优于现有算法。  相似文献   

3.
越来越多的物联网数据呈现高维度特征,针对目前传感器数据异常检测算法对高维数据在线检测的困难,提出一种基于深度信念网络的高维传感器数据异常检测算法。首先利用深度信念网络对高维数据进行特征提取,降低原始数据维度,再对降维后的数据进行异常检测。在检测过程中将QSSVM(Quarter-Sphere Support Vector Machine)与滑动窗口模型相结合,实现了在线式的异常检测。通过在四组真实传感器数据上的大量实验,与先前的异常检测算法做了对比,实验结果表明,新算法相对于OCSVM(One-Class Support Vector Machine)仅利用原有算法50%的计算时间,将检测准确度提高了约20%。  相似文献   

4.
基于密度的局部异常检测算法(LOF算法)的时间复杂度较高,限制了其在高维数据集以及大规模数据集中的使用。该文通过分析LOF算法,引入记忆效应概念,提出具有记忆效应的局部异常检测算法——MELOF算法。实验测试表明,该算法的计算结果与LOF算法完全相同,而且能够大大缩短运行时间。  相似文献   

5.
局部异常检测(Local outlier factor,LOF)能够有效解决数据倾斜分布下的异常检测问题,在很多应用领域具有较好的异常检测效果.本文面向大数据异常检测,提出了一种快速的Top-n局部异常点检测算法MTLOF(Multi-granularity upper bound pruning based top-n LOF detection),融合索引结构和多层LOF上界设计了多粒度的剪枝策略,以快速发现Top-n局部异常点.首先,提出了四个更接近真实LOF值的上界,以避免直接计算LOF值,并对它们的计算复杂度进行了理论分析;其次,结合索引结构和UB1、UB2上界,提出了两层的Cell剪枝策略,不仅采用全局Cell剪枝策略,还引入了基于Cell内部数据对象分布的局部剪枝策略,有效解决了高密度区域的剪枝问题;再次,利用所提的UB3和UB4上界,提出了两个更加合理有效的数据对象剪枝策略,UB3和UB4上界更加接近于真实LOF值,有利于剪枝更多数据对象,而基于计算复用的上界计算方法,大大降低了计算成本;最后,优化了初始Top-n局部异常点的选择方法,利用区域划分和建立的索引结构,在数据稀疏区域选择初始局部异常点,有利于将LOF值较大的数据对象选为初始局部异常点,有效提升初始剪枝临界值,使得初始阶段剪枝掉更多的数据对象,进一步提高检测效率.在六个真实数据集上的综合实验评估验证MTLOF算法的高效性和可扩展性,相比最新的TOLF(Top-n LOF)算法,时间效率提升可高达3.5倍.  相似文献   

6.
针对无线传感器网络(WSN)中传感器自身安全性低、检测区域恶劣及资源受限造成节点采集数据异常的问题,提出一种基于图信号处理的WSN异常节点检测算法。首先,依据传感器位置特征建立K-近邻(KNN)图信号模型;然后,基于图信号在低通滤波前后的平滑度之比构建统计检验量;最后,通过统计检验量与判决门限实现异常节点存在性的判断。通过在公开的气温数据集与PM2.5数据集上的仿真验证,实验结果表明,与基于图频域异常检测算法相比,在单个节点异常情况相同条件下,所提算法检测率提升7个百分点;在多个节点异常情况相同条件下,其检测率均达到98%,并且在网络节点异常偏离值较小时仍具有较高的检测率。  相似文献   

7.
随着传感器网络环境监控应用的发展,传感器网络测量数据的异常检测近年来受到学术界和工业界的高度关注.提出一种基于DBSCAN(Density BasedSpatialClusteringofApplicationwithNoise)的异常数据检测方法,该方法利用距离定义数据的相似度进行划分聚类,使用DBSCAN算法提取环境特征集,并根据特征集对异常数据进行检测.最后,基于真实的传感器网络完成了多组实验,实验结果表明该方法能够实时准确地检测出异常数据.  相似文献   

8.
车丽娜  任秀丽 《传感技术学报》2023,36(11):1801-1807
针对无线传感器网络中异常检测误报率高及节点间通信开销大的问题,提出了基于滑动窗口和置信度的无线传感器网络异常检测算法(ADABSWC)。该算法使用环境干扰因子量化监测环境中的不确定性,建立异常数据干扰区间识别滑动窗口中的异常数据。提出了数据异常度的计算方法,用来预判异常来源;然后引入多通信半径划分最佳邻域,利用相对熵计算节点信息置信度;根据节点信息置信度协同判定出节点异常数据的来源。通过仿真实验,ADABSWC算法在不同传感器节点规模下均体现了较好的性能。该算法与KNN-PSOELM、OFN算法相比,事件节点、错误节点的检测率均高于98%,且误报率均低于1.5%。实验结果表明,所提出的算法可保证高检测精度的同时控制误报率在较低水平,算法拥有较好的容错性能。  相似文献   

9.
为评估异常检测算法应用效果,文章运用无线温振传感器VA330在工业环境中收集设备运行状态数据,评估异常检测算法在识别异常数据点方面的性能指标。结果表明,异常检测算法在处理具有明显分布特征的数据时表现优异,特别是在减速箱数据中,该算法推断出可能存在的齿轮和联轴器对中不良问题,以适应现有的工业应用场景。  相似文献   

10.
吴中博  张重生  陈红  秦航 《软件学报》2009,20(7):1885-1894
节约能量以提高网络寿命是传感器网络研究面临的重要挑战.网内聚集查询在中间节点对数据进行预处理,可以减少消息传送的数量或者大小,从而实现能量的有效利用,但是,目前的聚集查询研究假设采样数据都是正确的.而目前的异常检测算法以检测率作为首要目标,不考虑能量的消耗,也不考虑查询的特点.所以将两方面的研究成果简单地结合在一起并不能产生很好的效果.分析了错误和异常数据可能对聚集结果造成的影响,提出了健壮聚集算法RAA(robust aggregation algorithm).RAA 对传统聚集查询进行了改进,在聚集的同时利用读向量相似性判断数据是否发生了错误或异常,删除错误数据,聚集正常数据并报告异常,使用户可以对网络目前状况有清晰的理解.最后,比较了RAA 和TAGVoting(在使用TAG(tiny aggregation)算法聚集的同时利用Voting算法进行异常检测),实验结果表明,RAA 算法在能量消耗和异常检测率方面都优于TAGVoting.  相似文献   

11.
局部离群点检测是近年来数据挖掘领域的热点问题之一.针对交通数据去噪问题,提出一种基于局部估计密度的局部离群点检测算法,算法使用核密度估计方法计算每个数据对象的密度估计值,来表示该数据对象的局部估计密度,并在核函数的带宽函数计算中引入数据对象的k-邻域平均距离作为其邻域信息,然后利用求出的局部估计密度计算数据对象的局部离群因子,依据局部离群因子的大小来判断数据对象是否为离群点.实验表明,该算法在UCI标准数据集与模拟数据集上都可以取得较好的表现.  相似文献   

12.
基于可达邻域的异常检测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
肖辉  龚薇 《计算机工程》2007,33(17):74-76
提出了可达邻域的概念,定义了基于可达邻域的异常RN-Outlier。给出了RNOF异常检测算法,克服了异常检测算法常被参数依赖和参数扰动所困扰的缺点。仿真数据集和真实数据集的实验表明,该算法的性能超过了经典的LOF和LSC算法,降低了参数依赖和参数扰动的影响。  相似文献   

13.
局部离群点挖掘算法研究   总被引:14,自引:0,他引:14  
离群点可分为全局离群点和局部离群点.在很多情况下,局部离群点的挖掘比全局离群点的挖掘更有意义.现有的基于局部离群度的离群点挖掘算法存在检测精度依赖于用户给定的参数、计算复杂度高等局限.文中提出将对象属性分为固有属性和环境属性,用环境属性确定对象邻域、固有属性计算离群度的方法克服上述局限;并以空间数据为例,将空间属性与非空间属性分开,用空间属性确定空间邻域,用非空间属性计算空间离群度,设计了空间离群点挖掘算法.实验结果表明,所提算法具有对用户依赖性少、检测精度高、可伸缩性强和运算效率高的优点.  相似文献   

14.
基于局部偏离因子的孤立点检测算法   总被引:1,自引:1,他引:1       下载免费PDF全文
谭庆  张瑞玲 《计算机工程》2008,34(17):59-61
孤立点检测是知识发现中的一个活跃领域,如信用卡欺诈、入侵检测等。研究孤立点的异常行为能发现隐藏在数据集中更有价值的知识。该文提出基于局部偏离因子(LDF)的孤立点检测算法,利用每个数据点的LDF衡量该数据点的偏离程度。实验结果表明,该算法能有效检测孤立点,其效率高于LSC算法。  相似文献   

15.
讨论了基于无指导离群点检测的网络入侵检测技术及实现框架.技术方法首先在网络数据包上通过改进的随机森林算法建立了网络服务模型,然后通过确定网络服务模型上的离群点实现网络入侵检测.还通过在KDD'99数据集上对所提出的技术实现入侵检测的实验及结果进行了讨论并与其他无指导异常检测方法进行了比较.  相似文献   

16.
基于密度的局部离群点检测算法   总被引:1,自引:0,他引:1  
基于统计学和基于距离的离群点检测都依赖与给定数据点集的全局分布,然而数据通常并非都是均匀分布的。当分析分布密度相差很大的数据时,基于密度的局部离群点检测方法有着很好的识别局部离群点的能力。但存在时间复杂度较大,文章提出了一种改进的算法,能降低时间复杂度,实现有效的局部离群点的检测。  相似文献   

17.
基于相似孤立系数的孤立点检测算法   总被引:1,自引:0,他引:1  
基于聚类的孤立点检测算法得到的结果比较粗糙,不够准确。针对该问题,提出一种基于相似孤立系数的孤立点检测算法。定义相似距离以及相似孤立点系数,给出基于相似距离的剪枝策略,根据该策略缩小可疑孤立点候选集,并降低孤立点检测算法的计算复杂度。通过选用公共数据集Iris、Labor和Segment—test进行实验验证,结果表明,该算法在发现孤立点、缩小候选集等方面相比经典孤立点检测算法更有效。  相似文献   

18.
周大镯  刘雷 《计算机工程》2009,35(16):45-47
在k-近邻局部异常检测算法的基础上,结合时间序列的分割方法,提出一种高效率的时间序列增量异常模式检测算法。将时间序列按序列重要点进行数据分割,利用局部异常检测方法检测出时间序列的异常模式。当插入一些新数据时,邻近分割模式发生变化,增量异常检测算法更新相应的最近邻模式。通过该算法可以高效率地发现时间序列的异常模式。  相似文献   

19.
鉴于离群点引发的数据质量问题给电力应用造成的不良影响,对电力感知数据的特征进行了分析,并基于电力感知数据的时间特征和异常检测技术的易用性需求,提出一种电力感知数据的离群点检测方案。该方案由异常检测服务框架和离群点检测方法构成。异常检测服务框架借鉴Web服务的思想,基于大数据技术,能够支持电力感知数据的存储和计算,并且以服务的形式提供电力感知数据的异常检测能力。离群点检测方法是基于聚类算法和考虑时间属性的数据分段方法来检测电力感知数据中的离群点异常。通过实验验证了该方法的可行性和有效性,结果表明该方法能够有效识别具有时间相关性和连续性的电力感知数据中存在的离群点,且在数据规模增大时,具有良好的并行性和可扩展性。  相似文献   

20.
针对基于密度的局部离群因子算法(LOF),需要计算距离矩阵来进行[k]近邻查寻,算法时间复杂度高,不适合大规模数据集检测的问题,提出基于网格查询的局部离群点检测算法。算法利用距离目标网格中的数据点最近的[k]个其他数据点,一定在该目标网格或在该目标网格的最近邻接网格中这一特性,来改进LOF算法的邻域查询操作,以此减少LOF算法在邻域查询时的计算量。实验结果证明,提出的LOGD算法在与原LOF算法具有基本相同的检测准确率的情况下,能够有效地降低离群点检测的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号