首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以氨法吸收CO2过程为研究对象,针对气液两相之间传热/传质及反应模型的区别,对比了RK(rate-based,kinetic),RC(rate-based,chemistry),EK(equilibrium-based,kinetic)and EC(equilibrium-based,chemistry)4种模型对CO2吸收过程中CO2吸收速率、富液碳化度、出口NH3浓度等关键目标参数的预测能力。模拟结果显示,RK模型对氨法CO2吸收过程具有最佳的预测能力。引入Murphree效率可修正基于平衡的模型对气液两相间传热/传质的预测,但是需要考虑到Murphree效率因组分而异并能逐级改变的局限。通过对Kinetic反应模型中动力学反应的敏感性分析发现,氨法吸收二氧化碳的过程主要受下述反应控制:NH3+CO2+H2O→NH2COO-+H3O+。  相似文献   

2.
为验证喷雾捕集CO2技术的可行性,应用微细喷雾法将一乙醇胺(monoethanolamine,MEA)溶液雾化,在喷雾塔中与模拟烟气逆向接触,可实现很高的CO2脱除率(95%以上)。研究不同的MEA浓度、MEA流量、烟气流量、烟气温度和CO2浓度对CO2脱除率的影响。实验结果表明,MEA溶液浓度和烟气流量对CO2脱除率影响较大:低浓度时,溶液流量增大CO2脱除率增大;在28~32℃范围内温度升高CO2脱除率上升;随CO2浓度的升高,CO2脱除率呈下降趋势。以上变化规律可归纳为反应物摩尔比、液气比和温度的影响,其中MEA与CO2的摩尔比是影响CO2脱除率的主要因素。  相似文献   

3.
在化学团聚技术中,无机盐离子对团聚剂性质的影响相当重要。采用分子动力学模拟方法研究了Na+、Mg~(2+)和Ca~(2+)对部分水解疏水改性聚丙烯酰胺(HMHPAM)溶液性质的影响机制。通过回旋半径以及径向分布函数表征方法分析阳离子对HMHPAM的水溶性以及溶液黏度的影响。回旋半径结果表明盐离子降低了HMHPAM溶液的黏度,其中Na+、Mg~(2+)和Ca~(2+)对溶液黏度影响的程度为Ca~(2+)Mg~(2+)Na+。阳离子水合作用结果表明Mg~(2+)的水合半径最小,其吸水能力最强,对HMHPAM的水溶性影响最大。径向分布函数分析显示Ca~(2+)可以进入羧酸根基团的第1层水合层,并与之直接相互作用,静电屏蔽作用最大,对溶液黏度影响最大;Na+对HMHPAM溶液的影响最小,只能起到微弱的静电屏蔽作用。  相似文献   

4.
镁铝复合金属氧化物作为中温(250~450℃)条件下吸收增强水气变换反应的吸收剂具有较好潜力。文中通过碳酸钾浸渍增加吸收剂表面碱性以提高镁铝复合金属氧化物CO_2吸收能力。热重分析研究了煅烧温度、碳酸钾修饰量、反应温度等对其CO_2吸收能力的影响规律,结合吸收剂表征结果,得出中温下吸收剂最佳煅烧温度为400℃左右,最佳碳酸钾修饰含量为25%。利用钾修饰镁铝复合金属氧化物恒温多循环吸收解吸实验及傅里叶变换红外光谱实验结果,推测镁铝复合金属氧化物吸收剂CO_2吸收机理。研究发现钾修饰镁铝复合金属氧化物对CO_2的吸收是部分可逆的,仅通过改变CO_2分压即可完成吸收剂的部分再生。  相似文献   

5.
由于电力需求的波动,受上游碳捕集电厂负荷变化的影响,胺法脱碳系统本质上是一个动态系统。但绝大多数关于胺法脱碳系统的研究是基于稳态运行方式展开的,对碳捕集系统动态研究还处于起步阶段。文中基于一个典型的燃煤电厂胺法脱碳装置,应用Aspen Dynamics软件建立胺法脱碳系统动态模型。研究了带基本控制结构胺法脱碳系统在再沸器热功率、烟气流量及烟气组分阶跃变化时,吸收和再生过程的动态响应特性。结果表明,在阶跃扰动下,CO2脱除率发生阶跃变化。为了实现固定的CO2脱除率,提出2种比例控制策略,根据烟气处理量及组分浓度变化,分别通过调节贫液流量及贫液CO2担载量来保持固定的CO2脱除率。动态分析表明,在烟气流量及组分阶跃变化时,2种控制策略下的胺法脱碳系统均可以实现固定的CO2脱除率。  相似文献   

6.
由于电力需求的波动,受上游碳捕集电厂负荷变化的影响,胺法脱碳系统本质上是一个动态系统。但绝大多数关于胺法脱碳系统的研究是基于稳态运行方式展开的,对碳捕集系统动态研究还处于起步阶段。文中基于一个典型的燃煤电厂胺法脱碳装置,应用Aspen Dynamics软件建立胺法脱碳系统动态模型。研究了带基本控制结构胺法脱碳系统在再沸器热功率、烟气流量及烟气组分阶跃变化时,吸收和再生过程的动态响应特性。结果表明,在阶跃扰动下,CO2脱除率发生阶跃变化。为了实现固定的CO2脱除率,提出2种比例控制策略,根据烟气处理量及组分浓度变化,分别通过调节贫液流量及贫液CO2担载量来保持固定的CO2脱除率。动态分析表明,在烟气流量及组分阶跃变化时,2种控制策略下的胺法脱碳系统均可以实现固定的CO2脱除率。  相似文献   

7.
以粉煤灰为原料采用直接液相法矿化封存燃煤电厂烟气中CO2是一种适合我国国情的新型CO2捕集与利用一体化技术。本文考察了粉煤灰物相组成、温度、固液比、气速、压力等工艺条件对矿化反应的影响,采用X射线粉末衍射、热重分析等手段研究了温和条件下粉煤灰的矿化反应机制。研究表明,增大悬浮液固液比能够有效增加CO2捕集能力但是会降低钙的转化率;烟气流速超过一定值后,CO2溶解成为决速步,Ca转化率达到饱和;温度对矿化反应有重要影响,对工艺温度条件的研究是进一步提高矿化反应效果的关键。当反应条件为温度60 ℃、固液比100 g/L、烟气流速350 mL/min时,北京粉煤灰对CO2的封存能力达到最大值(66 kg CO2/t粉煤灰,?Ca=50.86%)。基于该技术设计了5万t/a CO2直接液相矿化装置,估算了设备投资和运行成本。与国外采用天然矿石原料的CO2矿化技术相比,该技术反应条件更加温和,同时实现粉煤灰利用与温室气体减排,技术前景广阔,对我国未来实行碳中和目标具有价值。  相似文献   

8.
(1)华能北京热电厂采用化学吸收法捕碳技术。利用碱性溶液对酸性的CO2进行吸收,并借助逆反应实现溶剂的再生。目前应用最多的是单乙醇胺(MEA)的醇胺法。MEA法利用带有羟基和胺基的碱性水溶液,由吸收塔和再生塔组成CO2捕集系统,进行CO2的捕集。(2)燃气-蒸汽联合循环中余热锅炉在  相似文献   

9.
石灰石循环吸收技术被认为是一种高效、经济的减排烟气中CO2技术。但这种方法循环效率降低较快,吸收剂利用率也较低。为了对这一过程有很好的认识,改善吸收剂的利用率,针对颗粒典型气固反应模型的缺点,将逾渗理论应用于CaO与CO2反应模型中,对CaO颗粒吸收烟气中CO2的过程进行描述。实验数据与模型数据相结合,表明新的模型可以很好地对吸收过程进行描述,并得出:烟气中CO2体积分数对CaO转化率的影响主要是在反应初期的化学反应阶段;小粒径CaO颗粒在一定程度上可以提高CaO的钙转化率。这为实际过程提高循环吸收效率提供理论指导。  相似文献   

10.
尿素/三乙醇胺湿法烟气脱硫脱硝的试验研究   总被引:6,自引:1,他引:5  
尿素溶液与NOx反应生成N2和CO2气体,可实现烟气同时脱硫脱硝,该文进行了尿素/三乙醇胺湿法脱硫脱硝的试验研究。试验采用双级串连的填料塔为主体反应器,分别对气速、液气比、反应物浓度、添加剂浓度、反应温度等参数对尿素溶液吸收SO2反应的影响进行了试验研究,并进行了尿素溶液同时吸收SO2和NOx的试验研究,研究表明:增大气速、液气比可使脱硫效率增加,而三乙醇胺和尿素浓度对脱硫效率影响较小。SO2和NOx具有相互协同促进作用,其净化效率在试验条件下可分别提高1%~3%和5%~ 6%,总脱硫效率可达95%以上,脱硝效率在63%以上。  相似文献   

11.
针对CO2捕集系统有机胺液中热稳定盐的积累进而引起胺液损耗增加、腐蚀严重等问题,提出采用阴离子交换树脂去除胺液中热稳定盐阴离子,采用活性炭吸附去除胺液色度,最后采用大孔树脂进一步净化胺液的组合工艺,并对工艺的影响因素,以及净化胺液的吸收性能进行了测试。结果表明:阴离子交换树脂处理工艺在较高的温度、pH值及含盐量水平的条件下,均可以达到较好的效果,热稳盐去除率可达90%以上;变质有机胺液经过处理后,其CO2吸附能力恢复至新鲜胺液的92%,并且溶液颜色恢复至淡黄色透明液体,可满足工业回用要求。  相似文献   

12.
叶航  刘琦  彭勃  罗聃 《热力发电》2021,50(1):74-81
碳捕集、利用与封存(CCUS)技术是缓解全球气候变化的重要措施之一。纳米颗粒因具有良好表面效应和体积效应,能够强化CO2捕集传质性能而备受青睐,其可增大胺法吸收CO2过程中的传质系数并减少溶剂再生所需的能量,有望进一步提高CO2捕集效率、降低能耗。本文从纳米颗粒强化胺法吸收CO2过程出发,讨论了纳米颗粒强化吸收的3种机理(抑制气泡聚并机理、传输机理、边界层混合机理),总结了近年来国内外最新研究进展,论述了纳米颗粒强化CO2吸收过程中的主要影响因素,指出纳米颗粒对CO2吸收过程的强化是多重因素共同作用的结果,并对该技术的未来研究方向作了展望。  相似文献   

13.
采用新型混合有机胺CO2吸收剂,在捕集CO2中试实验台上进行长期稳定运行实验,研究SO2对碳捕集过程的影响。实验结果表明,SO2、胺吸收剂的氧化和热降解导致CO2脱除效率随着循环反应时间的增加而逐步降低,其中SO2是主要影响因素。在O2存在的条件下,SO2浓度越高,CO2脱除效率下降越快。随着SO2不断地被胺吸收剂吸收,一方面促进了热稳定性盐的生成,另一方面使吸收剂溶液的pH值逐步降低,最终使得CO2脱除效率越来越低。与此同时,越来越多的SO42-和SO32-占据了胺吸收剂的反应位,使其与CO2的吸收反应形成竞争关系,致使CO2负载量逐步降低,以至于影响到吸收解吸过程的稳定性。采用有效的方法适时的清除SO2导致的热稳定性盐,有利于碳捕集系统吸收解吸性能的提高。  相似文献   

14.
基于300 MW燃煤电站,采用流程模拟软件Aspen Plus,建立了传统的氨法大规模捕集CO2的模型,同时建立了一种新型的氨法脱碳模型。进一步对比分析了新型氨法脱碳工艺与传统的富液再生工艺的操作参数对脱碳效率、氨逃逸量、CO2出口流量以及再生能耗的影响。得出:新型的脱碳工艺在CO2的吸收与再生过程中较传统工艺有较大的优越性。在吸收过程中,新工艺在保证高的吸收反应速率的同时,也保证了高的NH3利用率;再生过程中,新工艺再生的CO2量高出传统工艺约30%,新工艺的再生能耗远低于传统工艺,当选用最优操作参数时新工艺的再生能耗仅为传统工艺的41.5%。因此新工艺更为经济。  相似文献   

15.
Fenton氧化法烟气脱硝实验   总被引:1,自引:0,他引:1  
以Fenton溶液为吸收剂,在自制的鼓泡反应器内进行了Fenton氧化法烟气脱硝初步实验,研究了Fenton试剂氧化法烟气脱硝的可能性,考察了H2O2溶液质量分数、FeSO4.7H2O投加量、溶液pH值、模拟烟气流量和模拟烟气成分等因素对烟气脱硝效率的影响,提出了烟气中NO先被羟基自由基氧化,而后被吸收液吸收的脱除机理。结果表明,在实验条件下,Fenton试剂对模拟烟气中的NO有一定的脱除效果,烟气含氧质量分数对脱除效率无明显影响,但脱硝率随烟气流量的增大而显著下降,H2O2溶液质量分数、FeSO4.7H2O投加量、溶液pH值存在最佳值,最佳实验条件下NO的脱除效率可达50%左右,脱硝产物主要为NO-3。  相似文献   

16.
与传统吸收技术相比,新型膜吸收技术在脱除烟气CO2中具有传质效率高、装置结构紧凑、能耗低、吸收成本低等优点.介绍新型膜吸收技术脱除燃煤电厂烟气CO2的原理.探讨膜材料、膜接触器组件及吸收剂等膜吸收法中的关键技术,对吸收性能的影响,总结该技术在实际燃煤电厂CO2脱除中的应用进展.  相似文献   

17.
吕泽宁  乔琨  王韬  杨立军 《热力发电》2021,50(12):115-121
氨水合物反应系统捕集CO2方法以其捕集效率高,设备成本低,应用范围广等优点从众多CO2捕集技术中脱颖而出,但存在氨逃逸问题。为此,本文自主设计并搭建了可变高度的喷淋塔实验系统,开展氨法吸收CO2的实验研究。通过改变低温条件下的运行参数得到了氨逃逸率和CO2脱除效率的影响因素和变化规律。结果表明:氨逃逸率随着氨水温度、氨水摩尔分数的增加而增加,随着CO2体积分数、喷淋塔高径比的增加而降低;CO2脱除效率随着氨水温度、氨水摩尔分数的增加而增加,随着CO2体积分数、喷淋塔高径比的增加而降低。本文实验获得的不同参数条件下的氨逃逸和CO2吸收规律,可为氨法CO2吸收技术的发展和完善提供参考。  相似文献   

18.
离子液完全是由特定的阴、阳离子所构成的有机盐,在室温或近于室温下呈液态,通过调整阴阳离子结构或加入功能化基团,可形成具有特定功能、任务专一的吸收剂,其用于CO2固定显示出良好性能。普通离子液主要利用离子间特有的自由空间固定CO2,这种物理吸收过程需要较高的压力,且吸收容量较低;功能化离子液中通过引入碱性功能基团来吸收CO2,提高了离子液对CO2的吸收容量。  相似文献   

19.
高效液相吸收剂同时脱硫脱硝的实验研究   总被引:6,自引:1,他引:5  
采用乙二胺合钴溶液作为吸收液,在双驱动搅拌反应器内,对模拟烟气进行湿法烟气同时脱硫脱硝的实验研究。主要考察在SO2存在的条件下,SO2的浓度、温度、NO的浓度、O2的浓度和pH值等因素对NO吸收速率的影响。研究表明:气相中SO2的存在不利于NO的吸收;NO的吸收速率随乙二胺合钴浓度的增加而增大;气相中氧的存在有利于提高NO的吸收速率;NO吸收的最佳温度是50 ℃;溶液的pH值是影响NO吸收的主要因素,最佳pH值为12.9,对于高浓度的乙二胺合钴溶液,溶液的pH值对NO吸收速率的影响显著。  相似文献   

20.
在自制煅烧/碳酸化实验台上研究煅烧气氛、温度和碳酸化温度对分析纯碳酸钙和某电厂脱硫用石灰石吸收CO2过程中碳酸化率的影响,并用CO2的吸收量比较其吸收CO2能力的大小.结果表明:随着煅烧气氛中CO2浓度和煅烧温度的增加,分析纯碳酸化率在逐渐降低;煅烧温度为l 233 K时,分析纯CO2吸收量比脱硫用石灰石的低.同条件下...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号