首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超细高性能灌浆水泥的性能及其微观结构研究   总被引:2,自引:0,他引:2  
以超细水泥、I级粉煤灰、磨细矿渣及含铝质增强组分制备了超细高性能灌浆水泥(简称MHPGC),其中以粉煤灰为主的多组分复合改性材料占45%以上。研究了该材料的性能及微观结构,研究结果表明强度、变形能力、流变性能和抗侵蚀能力均有提高;水泥石中的CH含量低且随水化龄期的增加而减少,C—S—H的钙硅比低,MHPGC水化早期生成的钙矾石形成空间网络结构,水泥的其它水化物填充于网络中,随着水化的进行结构逐渐变得密实;该材料与岩石界面粘结紧密,在界面区CH的择优取向小。  相似文献   

2.
为研究不同煅烧温度下,含氟硫熟料中不同性能、形貌特征的A矿与水泥水化形成钙矾石的关系以及A矿对水泥水化性能的影响,采用工业原料并尽量模拟立窑内煅烧状况,对经1350℃和1425℃温度下煅烧的熟料进行了A矿形貌、A矿水化率及A矿与钙矾石形成关系等系列试验。试验结果表明,在传统的煅烧温度下(1400~l425℃)烧成的熟料.其A矿的固溶程度及A矿含量均比低温(1350℃)烧成的高;掺氟硫复合矿化剂烧制的熟料的A矿具有较高的水化速度,熟料强度较高.其制成的水泥在水化时,液相成分受高固溶程度A矿的水化所控制,所形成的钙矾石较低温煅烧的稳定.且A矿水化产物的形成与钙矾石(AFt)的形成较协调,水泥石机械强度更高。  相似文献   

3.
高水速凝固化材料的性能及其水化硬化机理研究   总被引:2,自引:0,他引:2  
本文研究了一种新型胶凝材料──以CAS水泥熟料为基料的高水速凝固化材料的水化硬化机理和水化产物组成以及水化温度、石膏掺量对其凝结、强度性能的影响。同时还初步探讨了这种材料在土壤固化中的应用。研究结果表明,含C_4A_3S的CAS的水泥熟料浆体与另一种含有石膏、Ca(OH)_2、石灰石、悬浮剂和某种碱金属盐的浆体能在较短时间内发生化合作用并形成大量的钙矾石等水化产物,导致该材料在水固比高达2.0~3.0时迅速胶凝、硬化并产生一定的强度;这种材料的石膏掺量有一较佳范围,其性能在环境温度低于30℃时发挥较佳;同时发现这种材料对含水率很高的泥浆固化效果明显优于Aught—Set固化剂。  相似文献   

4.
研究了蒸汽养护和标准养护条件下混合材掺量不同的水泥力学性能差异,并利用XRD、SEM、DSC等测试方法对组分不同水泥水化产物及水化特性等进行对比分析。结果表明,与20℃标准养护相比,85℃常压蒸养下水泥水化产物基本相同,且水化产物数量远高于前者,并有钙矾石(AFt)稳定存在;混合材掺量适宜的水泥样品中有亚稳态水化硅酸钙(C_9S_6H_(18))的形成,这可能是蒸养强度差异的主要原因之一。混合材掺量不同,水化产物形貌也存在明显差异。混合材掺量高达50%时,水化产物形成数量明显减少,水泥石结构疏松,蒸养强度显著降低。混合材中硅灰的掺入,有利于细化水泥石结构,促进水泥石蒸养强度的发展。  相似文献   

5.
钙矾石是水泥的一种重要水化产物。经过反复摸索,本研究找出了合成Fe2O3的克分子百分含量从0至100的钙矾石型固溶体的条件。精确测定了含Fe2O3量不同的钙矾石的晶胞参数,并做了失重和差热分析。结果表明:①晶胞参数和热性能随钙矾石中的Fe2O3含量增加而连续变化;②随铁含量的增加,钙矾石晶胞变大;③钙矾石中溶入Fe2O3之后,热稳定性稍有下降,全铁端员差热曲线主吸热谷较全铝端员降低约6℃。  相似文献   

6.
研究发现,在含微量氟的CaO-Al2O3-SiO2-BaSO4系统中,于1200~1350℃合成的含钡硫铝酸盐熟料,对低标号水泥具有促进凝结和提高早强的作用,将其与有机物复合后可制备一种对水泥早、后期强度具有显著增强作用的新型低碱度复合早强剂。采用XRD、SEM、压汞法、结合水测定等测试方法进行研究表明,水泥熟料矿物水化的加速,水化早期较多数量钙矾石的形成和水化产物间的较好连结,以及水泥石结构的致密化是水泥强度得以提高的主要原因。  相似文献   

7.
木质素磺酸钙对水泥水化的影响   总被引:1,自引:1,他引:0  
研究了掺加木质素磺酸钙(calcium lignosulfonate,CLS)后水泥净浆体系的水化速度、水化产物生成量,以及硬化水泥石的微观结构及孔隙结构的变化。CLS大幅度延缓了水泥水化放热,降低了水化速度,使3~10h内水泥的水化程度减少,但对1d后的水化程度影响不大且能促进水泥的后期水化。X射线衍射分析表明高掺量CLS促进硬化水泥中生成钙矾石,抑制水化硅酸钙(CSH)的早期生成,但对CSH的后期生成无影响。扫描电镜观察发现:CLS的掺加抑制了水化产物晶体的生长,使CSH凝胶难以形成空间网架,钙矾石晶体变得纤细。随CLS掺量的增加,硬化水泥中总孔隙容积增加,30nm以上的孔隙显著减少,10nm以下的微孔数量大幅度增加,平均孔径减小。掺加CLS的水泥浆体水化产物晶体发育不完全,硬化水泥的孔隙容积明显增加,是硬化水泥28d龄期内抗压强度显著下降的主要原因。  相似文献   

8.
前言钙矾石是硬化水泥浆体的重要组分之一,它对水泥石的结构和性能有重要影响。从钙矾石为基础的膨胀和自应力水泥、超硫酸盐水泥、硫铝酸盐早强水泥和低碱度水泥等都有相当数量的钙矾石,并且以它作为早强组分的新品种水泥正在不断增多。钙矾石的形成不仅是上述几种水泥水化中的一个重要反应,而且也是硅酸盐水泥早期水化和含硫酸盐的环境水与硬化浆体之间的一个重要反应。如水泥浆体的缓凝,膨胀水泥混凝土中自应力的发展以及混凝土的硫酸盐侵蚀等,都与钙矾石的形成有关。  相似文献   

9.
分别研究了随硫铝酸盐基促强减缩剂(SP-SRA)掺量变化,P·Ⅰ和P·O两种水泥的标准稠度用水量、凝结时间、28 d干空收缩以及胶砂强度的变化规律,分析了不同掺量的SP-SRA对P·Ⅰ水泥水化热、水化产物物相和微观形貌的影响。结果表明:随SP-SRA掺量的增加,两种水泥的初凝、终凝时间明显缩短,28 d干空收缩减少,各龄期抗折、抗压强度增大;早期水化放热速率随SP-SRA掺量的增加而增大,XRD和DSC分析表明SP-SRA使钙矾石含量明显增多,MIP分析结果显示随水化的进行,掺SP-SRA的水泥浆体小孔数量逐渐增多,说明钙矾石等水化产物填充了水泥石毛细孔,使得大孔数量减少,小孔数量增加,水泥石更加密实,强度增大,并且钙矾石的膨胀性抵消了部分收缩,使得掺SP-SRA的水泥干空收缩减小。  相似文献   

10.
吴宗道 《硅酸盐学报》1994,22(4):399-405
用扫描电镜、X射线能谱仪观测和分析了硫铝酸盐水泥系列的水化产物钙矾石的一种特殊显微形貌-管状钙矾石。在水泥净浆试体中、界面上、不同石膏掺量的水泥浆试体、砂浆试体、水化的熟料颗粒中均可观测到管状钙矾石。它的形成可能与非平衡状态生产的熟料中C4A3S矿相的某种晶体结构有关。  相似文献   

11.
将硫铝酸盐基促强减缩剂(SP-SRA)掺入到基准水泥中,并且按一定的比例设计了硫铝酸盐熟料-硬石膏-基准水泥的配合比,对宏观性能、水化过程、微观产物进行了对比分析.结果表明:掺SP-SRA的水泥各个龄期抗压抗折强度均高于硫铝酸盐熟料-硬石膏-基准水泥三元体系;掺SP-SRA的水泥早期水化放热速率大于硫铝酸盐熟料-硬石膏-基准水泥三元体系;XRD结果表明,掺SP-SRA的水泥水化生成的AFt(三硫型水化硫铝酸钙即钙矾石)含量多于三元体系生成的AFt,钙矾石的微膨胀性使得水泥石结构更加致密,有利于提高水泥石的强度,硫铝酸盐熟料-硬石膏-基准水泥体系有明显的AFm(单硫型水化硫铝酸钙)生成,即部分AFt转化成AFm.  相似文献   

12.
钙矾石是水泥的一种重要水化学产物。经过反复摸索,本研究找出了合成了Fe2O3的克分子百分含量从0至100的钙面庞大溶体的条件。精确测定了含Fe2O3量不同的钙矾石的晶胞参数,并做了失重和差热分析,结果表明:(1)晶胞参数和热性能随钙矾威逼的Fe2O3含量增加而连续变化;(2)随铁含量的增加,钙矾石晶胞变在;93)钙矾石中溶入Fe2O3之后,热稳定性稍有下降,全铁端员差热曲线主吸热谷较全铝端员降低  相似文献   

13.
通过开展超高性能混凝土(UHPC)基体的再水化试验,测试了不同再水化时间水泥石的化学结合水量、试件膨胀率和抗压强度,基于Krstulovi?–Dabi?的水泥水化动力学和水泥水化微观信息,建立了再水化模型,同时结合微观形貌变化和孔结构变化,基于建立的模型,分析了再水化作用对其水稳定性的影响机理。结果表明:在低水灰比(0.15~0.30)范围内,水灰比越低,再水化结合水量在前期越大,后期反而越小;再水化过程中,试件膨胀率随水灰比的降低呈增大趋势;不同水灰比水泥石的抗压强度随再水化时间的增长呈增大和减小交替出现的趋势。根据再水化模型计算的水泥水化度模型预测结果和试验结果吻合良好,表明所建立的模型可以较准确地模拟UHPC基体的再水化过程。水灰比0.30水泥石较大的水泥水化速率导致其具有较高的抗压强度增长幅度。再水化前期,水泥水化速率快,再水化产物不断填补水泥石内部初始孔隙,后期水泥水化速率缓慢,再水化产物体积膨胀导致水泥石出现微裂缝,UHPC基体性能劣化。  相似文献   

14.
铝酸盐矿物对氯氧镁水泥的影响   总被引:3,自引:1,他引:3  
本讨论了铝酸盐矿物对氯氧镁水泥的水化产物、耐水性和强度的影响。通过XRD相分析,证明了具有水化活性的铝酸盐矿物(如CA,C4AF等)对氯氧镁水泥的水化相有影响;而没有水化活性的铝酸盐矿物(如C2AS)对氯氧镁水泥的水化相没有影响。当氯氧镁水泥中MgO/MgCl2摩尔比大于5时,含有CA或C4AF的净浆硬化体中主要水化相是3·1·8相,而不含CA或C4AF或含C2AS的净浆硬化体中主要水化相是5·  相似文献   

15.
本文回顾了膨胀和自应力水泥发展以及对水泥石的硫铝酸盐膨胀研究的历史。介绍了建材研究院水泥所物化室自六十年代初至最近关于水泥石硫铝酸盐膨胀的研究结果。认为:1.在水泥石硬化初期形成的钙矾石起强度骨架作用,在水泥石具有一定强度后,继续形成的钙矾石才起膨胀作用;不管形成钙矾石的Al_2O_3、CaO、SO_3的来源如何,不管液相中 CaO的浓度是饱和还是不饱和,所形成的钙矾石均能引起膨胀。2.水泥石的硫铝酸盐膨胀时产生的自应力值和水泥石结构与下述条件有关:钙矾石形态(取决于液相CaO浓度)、数量、形成钙矾石时的水泥石强度;与钙矾石同时生成的胶凝相的形成方式、数量、形态以及混凝土的限制条件。3.水泥石液相中CaO低于饱和浓度时,某些铝酸盐矿物形成了膨胀性较小的钙矾石并在同一反应中形成了水化氧化铝凝胶,得到的水泥石的显微结构致密,强度和膨胀协调发展,混凝土的自由膨胀率和限制膨胀率的比值较小,有利于获得高自应力值及高气密性的自应力水泥混凝土。用上述论点,讨论了与形成钙矾石有关的膨胀现象和理论,展望化学予应力逐步赶上机械予应力及大幅度提高水泥制品抗气渗性能的前景。  相似文献   

16.
蒋永惠  王新颖 《水泥》1996,(2):12-17
采用正交试验对粉煤灰低热微膨胀水泥进行配比优选,通过提高粉磨细度,使用高温煅烧石膏,掺加复合外加剂等方法,成功地研制出粉煤灰低热微膨胀水泥(粉煤灰掺量超过60%)。通过X射线衍射(XRD)、扫描电镜(SEM)和水化热测定等现代测试技术,深入探索了该水泥的水化机理。研究表明:粉煤灰中玻璃体受机械和化学等多种活化后,火山灰反应加速,生成较多的钙矾石和C─S─H凝胶,形成致密网络状的水泥石结构,有效地改善了该水泥的各种性能。  相似文献   

17.
本文通过测定不同掺量的聚羧酸减水剂(PCE)作用下铝酸三钙(C3A)-石膏体系水化热,并采用XRD、SEM、Raman分析了水化产物微观结构的形成规律,研究了PCE对铝酸三钙-石膏体系水化调控机理.结果表明:水灰比为0.6,摩尔比为1∶1的铝酸三钙-石膏体系,水化24 ~ 48 h时出现水化热温峰,并生成大量的Aft(钙矾石);PCE掺量不同对铝酸三钙-石膏体体系的水化调控存在延缓与加速水化的双重作用,当掺量为0.1% ~0.3%时,PCE抑制铝酸三钙-石膏体系水化放热及AFt的形成;当掺量为0.5%时,PCE促进铝酸三钙-石膏体系水化放热,加速AFt的形成.  相似文献   

18.
研究了不同掺量的矿渣和粉煤灰对水泥脆性的影响及规律,同时就混合材改善水泥脆性的机理进行了分析。结果表明,混合材能够改善水泥的脆性,但只有掺量〉15%后效果才比较明显;混合材改善水泥脆性的机理,除了已有共识的二次水化反应消耗浆体中的Ca(OH)2和改善界面过渡带外,还包括以下机理:由于Ca(OH)2浓度的降低,使其不能饱和结晶,而形成薄弱的层状结构;水泥浆体成为相对低钙体系,利于纤维状钙矾石的形成;混合材的使用,降低了水泥的水化速率,减少了因化学收缩、自收缩、温差收缩等原因造成的微裂缝。  相似文献   

19.
沈燕  李雪飘  陈玺  张伟 《硅酸盐通报》2018,37(10):3197-3200
硫硅酸钙是硫铝酸盐水泥熟料煅烧过程中形成的一种过渡性矿物,该矿物在Al(OH)4-存在条件下活性可得以有效激发,本文研究了硫硅酸钙对粉煤灰硅酸盐水泥体系凝结时间、强度的影响规律,并对水泥体系7d水化产物进行了XRD分析.结果表明,当硫硅酸钙掺量为5%时,水泥初凝、终凝时间稍微延长,当硫硅酸钙的掺量大于5%时,粉煤灰水泥体系的初凝、终凝时间显著低于未掺粉煤灰的水泥体系;硫硅酸钙5%掺量下可显著提高粉煤灰水泥体系的早期、后期强度,当硫硅酸钙掺量为15%时,水泥强度有所降低;从水化产物的微观分析来看,硫硅酸钙适宜的掺加促进了水泥矿物的水化以及水化产物钙矾石的形成,并且在粉煤灰掺入后,水化产物的形成量增加更加明显.  相似文献   

20.
石膏对水泥熟料的缓凝促强作用   总被引:1,自引:0,他引:1  
从理论上说,石膏对硅酸盐水泥熟料的缓凝促强作用是由于熟料与石膏一起磨细加水后,熟料中各矿物与石膏一起迅速溶解于水,并开始水化,形成石膏、石灰饱和溶液。而在熟料各矿物中,C3A的水化速度最快,C3A在石膏、石灰的饱和溶液中生成钙矾石,在熟料颗粒表面形成钙矾石保护膜,封闭熟料组分的表面,阻滞水分子以及离子的扩散,从而延缓了熟料颗粒特别是C3A的继续水化,也就是延长了熟料的凝结时间。随着扩散作用的进展,生成钙矾石的量不断增加,在尚未硬化的浆体中生成钙矾石,有助于强度、尤其是早期强度的发挥,从而提高了熟…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号