共查询到20条相似文献,搜索用时 10 毫秒
1.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of neuronal injury after carbon monoxide (CO) poisoning. Severe CO poisoning is treated with hyperbaric oxygen (HBO), which eliminates CO quickly from hemoglobin and body tissue stores, but has a potential to increase ROS generation. In this study, the effects of HBO on generation of highly reactive hydroxyl radical (HO.) in the brain after CO poisoning in rats was investigated using nonenzymatic hydroxylation of salicylic acid to 2,3 dihydroxybenzoic acid (2,3-DHBA) as a probe. In control studies, the concentrations of 2,3-DHBA after HBO in brain mitochondria and postmitochondrial supernatant (cytosol) were similar to air-exposed animals. After CO poisoning, 2,3-DHBA concentration increased in brain mitochondria but not in the cytosol. After CO exposure and HBO administration at 1.5 atmospheres absolute (ATA), a decrease in 2,3-DHBA production was detected in brain mitochondria. After CO and HBO at 2.5 ATA, 2,3-DHBA concentration increased in both mitochondria and cytosol. The oxidant scavenger dimethylthiourea (DMTU) and the monoamine oxidase (MAO) inhibitor pargyline, administered to CO poisoned rats after HBO at 2.5 ATA, diminished 2,3-DHBA production in both subcellular compartments. These findings indicate that brain HO. production can be either diminished or accelerated after severe CO poisoning depending on the oxygen partial pressure employed during therapy. 相似文献
2.
3.
Electrical stimulation of the cerebellar fastigial nucleus (FN) increases CBF and reduces brain damage after focal ischemia. We studied whether FN stimulation "protects" the brain from ischemic damage by increasing blood flow to the ischemic territory. Sprague-Dawley rats were anesthetized (halothane 1-3%) and artificially ventilated through a tracheal cannula inserted transorally. CBF was monitored by a laser-Doppler probe placed over the convexity at a site corresponding to the area spared from infarction by FN stimulation. Arterial pressure (AP), blood gases, and body temperature were controlled, and the electroencephalogram (EEG) was monitored. The stem of the middle cerebral artery (MCA) was occluded. After occlusion, the FN was stimulated for 60 min (100 microA; 50 Hz; 1 s on-1 s off) while AP was maintained at 97 +/- 11 mm Hg (mean +/- SD) by controlled hemorrhage. Rats were then allowed to recover, and infarct volume was determined 24 h later in thionin-stained sections. In unstimulated rats (n = 7), proximal MCA occlusion reduced CBF and the amplitude of the EEG. One day later, these rats had infarcts involving neocortex and striatum. FN stimulation after MCA occlusion (n = 12) enhanced CBF and EEG recovery [61 +/- 34 and 73 +/- 43%, respectively at 60 min; p < 0.05 vs. unstimulated group; analysis of variance (ANOVA)] and reduced the volume of the cortical infarct by 48% (p < 0.05). In contrast, hypercapnia (PCO2 = 64 +/- 4; n = 7) did not affect CBF and EEG recovery or infarct volume (p > 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
To better understand the mechanisms by which neutrophils migrate into the airways, we constructed a novel in vitro model system with human umbilical vein endothelial cell (HUVE) monolayers grown on top of permeable filters and human lung Type II-like alveolar epithelial cell (A549) monolayers grown on the undersurface of the filters. The sequential migration of human neutrophils through the endothelium (apical to basal movement) and subsequently through the epithelium (basal to apical movement) in response to a stimulus located basally to the epithelium was measured. We found that the neutrophil chemoattractants, formylmethionylleucylphenylalanine (FMLP), leukotriene B4 (LTB4), and interleukin-8 (IL-8), induced dose-responsive migration through the double monolayer-filter complex. The pattern of migration was similar to that observed through either a naked filter or single monolayer-filter complex. Maximal chemotaxis through the double monolayer-filter complex was observed by 3 hours. Thus, we have established an in vitro model system to examine the sequential migration of neutrophils through endothelium and the respiratory epithelium in a manner analogous to that occurring with an in vivo airway stimulus causing neutrophil-rich airway inflammatory responses. 相似文献
5.
OBJECTIVES: After fluid percussion brain injury (FPI) in the newborn pig, pial arteries constrict and responses to dilator stimuli, including opioids, are blunted. This study was designed to determine if altered release of prostaglandins contributes to blunted opioid dilation of cerebral arteries in newborn piglets following brain injury. DESIGN: Prospective, in vivo, cerebral hemodynamic animal study. SETTING: University research laboratory. SUBJECTS: Newborn (1- to 5-days old) piglets of either gender. INTERVENTIONS: In anesthetized, newborn, 1- to 5-day-old pigs, a closed cranial window was used to measure pial artery diameter and to collect cortical periarachnoid cerebrospinal fluid (CSF) for determination of 6-keto-PGF1alpha, the stable metabolite of prostaglandin I2 (PGI2) and thromboxane B2 (TXB2), the stable metabolite of TXA2, via radioimmunoassay. FPI of moderate severity (1.9 to 2.3 atmospheres) was produced by using a pendulum to strike a piston on a saline-filled cylinder that was fluid coupled to the brain via a hollow screw inserted through the cranium. MEASUREMENTS AND MAIN RESULTS: Methionine enkephalin (Met) vasodilation was blunted after FPI but was partially restored with indomethacin pretreatment (5 mg/kg i.v.) (8 +/- 1 [SEM] %, 13 +/- 1%, and 20 +/- 1% vs. 1 +/- 1%, 3 +/- 1%, and 5 +/- 1% vs. 7 +/- 1%, 10 +/- 1%, and 15 +/- 1%, respectively, for 10(-10), 10(-8), and 10(-6) M Met during control conditions, after FPI, and after FPI pretreated with indomethacin, n = 6). Similarly, restoration of Met dilation after FPI was observed with SQ 29,548, a TXA2 antagonist. Met-induced 6-keto-PGF1alpha release was blunted following FPI (889 +/- 20, 1130 +/- 33, and 1886 +/- 59 vs. 2630 +/- 36, 2775 +/- 30, and 2825 +/- 36 pg/mL for control, 10(-10), and 10(-6) M Met before and after FPI, respectively, n = 6). In contrast, Met-induced TXB2 release was enhanced after FPI (340 +/- 20, 423 +/- 25, and 473 +/- 30 pg/mL vs. 518 +/- 30, 726 +/- 90, and 901 +/- 35 pg/mL for control, 10(-10), and 10(-6) M Met before and after FPI, respectively, n = 6). Leucine enkephalin- and dynorphin-induced dilation and associated prostaglandin release were similarly altered following FPI. Beta endorphin-induced constriction was enhanced following FPI, and these potentiated responses were blunted after indomethacin or SQ 29,548 pretreatment. CONCLUSIONS: These data show that FPI increases CSF 6-keto-PGF1alpha and TXB2 concentrations. These data suggest that altered release of prostaglandins by opioids contribute to impaired cerebral hemodynamics following FPI in piglets. 相似文献
6.
During reperfusion after ischemia, deleterious biochemical processes can be triggered that may antagonize the beneficial effects of reperfusion. Research into the understanding and treatment of reperfusion injury (RI) is an important objective in the new era of reperfusion therapy for stroke. To investigate RI, permanent and reversible unilateral middle cerebral artery/common carotid artery (MCA/CCA) occlusion (monitored by laser Doppler) of variable duration in Long-Evans (LE) and spontaneously hypertensive (SH) rats and unilateral MCA and bilateral CCA occlusion in selected LE rats was induced. In LE rats, infarct volume after 24 hours of permanent unilateral MCA/CCA occlusion was 31.1 +/- 34.6 mm3 and was only 28% of the infarct volume after 120 to 300 minutes of reversible occlusion plus 24 hours of reperfusion, indicating that 72% of the damage of ischemia/reperfusion is produced by RI. When reversible ischemia was prolonged to 480 and 1080 minutes, infarct volume was 39.6 mm3 and 16.6 mm3, respectively, being indistinguishable from the damage produced by permanent ischemia and significantly smaller than damage after 120 to 300 minutes of ischemia. Reperfusion injury was not seen in SH rats or with bilateral CCA occlusion in LE rats, in which perfusion is reduced more profoundly. Reperfusion injury was ameliorated by the protein synthesis inhibitor cycloheximide or spin-trap agent N-tert-butyl-alpha-phenylnitrone pretreatment. 相似文献
7.
8.
WD Dietrich O Alonso R Busto MY Globus MD Ginsberg 《Canadian Metallurgical Quarterly》1994,87(3):250-258
The purposes of this study were (1) to document the histopathological consequences of moderate traumatic brain injury (TBI) in anesthetized Sprague-Dawley rats, and (2) to determine whether post-traumatic brain hypothermia (30 degrees C) would protect histopathologically. Twenty-four hours prior to TBI, the fluid percussion interface was positioned over the right cerebral cortex. On the 2nd day, fasted rats were anesthetized with 70% nitrous oxide, 1% halothane, and 30% oxygen. Under controlled physiological conditions and normothermic brain temperature (37.5 degrees C), rats were injured with a fluid percussion pulse ranging from 1.7 to 2.2 atmospheres. In one group, brain temperature was maintained at normothermic levels for 3 h after injury. In a second group, brain temperature was reduced to 30 degrees C at 5 min post-trauma and maintained for 3 h. Three days after TBI, brains were perfusion-fixed for routine histopathological analysis. In the normothermic group, damage at the site of impact was seen in only one of nine rats. In contrast, all normothermic animals displayed necrotic neurons within ipsilateral cortical regions lateral and remote from the impact site. Intracerebral hemorrhagic contusions were present in all rats at the gray-white interface underlying the injured cortical areas. Selective neuronal necrosis was also present within the CA3 and CA4 hippocampal subsectors and thalamus. Post-traumatic brain hypothermia significantly reduced the overall sum of necrotic cortical neurons (519 +/- 122 vs 952 +/- 130, mean +/- SE, P = 0.03, Kruskal-Wallis test) as well as contusion volume (0.50 +/- 0.14 vs 2.14 +/- 0.71 mm3, P = 0.004).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Y Numagami AB Zubrow OP Mishra M Delivoria-Papadopoulos 《Canadian Metallurgical Quarterly》1997,69(4):1542-1547
Nitric oxide (NO) is reported to cause neuronal damage through various mechanisms. The present study tests the hypothesis that NO synthase inhibition by N(omega)-nitro-L-arginine (NNLA) will result in decreased oxygen-derived free radical production leading to the preservation of cell membrane structure and function during cerebral hypoxia. Ten newborn piglets were pretreated with NNLA (40 mg/kg); five were subjected to hypoxia, whereas the other five were maintained with normoxia. An additional 10 piglets without NNLA treatment underwent the same conditions. Hypoxia was induced with a lowered FiO2 and documented biochemically by decreased cerebral ATP and phosphocreatine levels. Free radicals were detected by using electron spin resonance spectroscopy with a spin trapping technique. Results demonstrated that free radicals, corresponding to alkoxyl radicals, were induced by hypoxia but were inhibited by pretreatment with NNLA before inducing hypoxia. NNLA also inhibited hypoxia-induced generation of conjugated dienes, products of lipid peroxidation. Na+,K+-ATPase activity, an index of cellular membrane function, decreased following hypoxia but was preserved by pretreatment with NNLA. These data demonstrate that during hypoxia NO generates free radicals via peroxynitrite production, presumably causing lipid peroxidation and membrane dysfunction. These results suggest that NO is a potentially limiting factor in the peroxynitrite-mediated lipid peroxidation resulting in membrane injury. 相似文献
10.
PURPOSE: Pressure-induced ocular ischemia is a frequent model for the investigation of the mechanisms and therapy of retinal ischemic damage. It is important to know whether the tissue damage in such experiments is uniform or irregular. METHODS: We reviewed histologic features of Dutch rabbit eyes after 60-80 min of pressure-induced ischemia. The eyes were enucleated 4 hr, 1 day, or 1 wk after circulation was restored, at which times the electroretinogram b-wave was moderately reduced. RESULTS: Light microscopy showed an irregular distribution of damage involving all retinal layers and retinal pigment epithelium. Some regions of damage (or preservation) were several millimeters wide; others were as small as a few cell widths. Correlation with electroretinogram reduction in individual eyes was difficult. CONCLUSIONS: These results show that pressure-induced ischemic damage in the rabbit, sufficient to reduce the electroretinogram, has a patchy and irregular effect on retina and retinal pigment epithelium. Erroneous judgments may be made about ischemic damage, or therapeutic intervention, if only small or selected regions of retina are examined histologically. 相似文献
11.
The effects of myocardial ischemia and reperfusion on interstitial hydroxyl radical production, in the left ventricular myocardium of anesthetized cats, were investigated. Ringer's solution containing salicylic acid was perfused through an implanted microdialysis probe. Hydroxyl radical production was evaluated as the 2,3 and 2,5 dihydroxybenzoic acid (DHBA) concentrations in the microdialysates by an on-line high performance liquid chromatography system. Myocardial ischemia for 60 min, induced by ligation of the left anterior descending coronary artery, significantly increased both 2,3 and 2,5 DHBA levels when compared with the sham-operated cats. Naloxone (1 mg/kg, bolus, intravenous), an endogenous opioid peptide receptor antagonist, significantly suppressed the ischemia-induced production of hydroxyl radicals. Myocardial ischemia also induced cardiac arrhythmia. Naloxone reduced the severity of ischemia-induced arrhythmia, as observed by a significantly lower arrhythmia score (1.4 +/- 0.2 vs. 4.6 +/- 0.4 for control), and by diminished incidence of ventricular tachycardia (0/7 vs. 8/8 for control) and ventricular fibrillation (0/7 vs. 3/8 for control). Furthermore, perfusion of dynorphin (0.25 microgram, 2.5 micrograms and 25 micrograms), an endogenous opioid peptide receptor agonist, increased hydroxyl radical production. Our results suggest that, in anesthetized cats, myocardial ischemia can induce production of interstitial hydroxyl radical in left ventricular myocardium, and this production may involve the actions of released endogenous opioid peptides on their receptors. 相似文献
12.
13.
Cocchini Gianna; Beschin Nicoletta; Cameron Annette; Fotopoulou Aikaterini; Della Sala Sergio 《Canadian Metallurgical Quarterly》2009,23(2):223
Anosognosia for motor impairment has been linked to lesions of the right hemisphere. However, left hemisphere damaged patients have often been excluded from investigation because of their associated language deficits. In this study we assessed anosognosia for motor disorders in a group of left hemisphere damaged patients using 2 tools that assess the presence of unawareness—a structured interview that is a common method of assessment of anosognosia in clinical settings, and a new tool, the Visual-Analogue Test for Anosognosia for Motor Impairment (VATAm; Della Sala, Cocchini, Beschin, & Cameron, in press). The structured interview relies heavily on language and enquires about general motor ability whereas the VATAm is less dependent on language abilities and enquires about specific motor tasks. Results suggest that the frequency of anosognosia in left brain damaged patients may have been underestimated due to methodological reasons, and that anosognosia for motor impairment can also be associated with lesions of the left hemisphere. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
14.
Polymorphonuclear leukocytes (PMNLs), nitric oxide (NO), calcium, and free radicals play an important role in hypoxia/ischemia and reoxygenation injury. In the present study, NO donors, sodium nitroprusside (SNP), and diethylamine-NO (DEA-NO) at low concentrations (10 and 100 nmol/L) potentiated, while higher (10 micromol/L to 10 mmol/L) concentrations inhibited free radical generation response in the rat PMNLs. Free radical generation response was found to be significantly augmented when hypoxic PMNLs were reoxygenated (hypoxia-reoxygenation [H-R]). This increase in free radical generation after reoxygenation or SNP (10 nmol/L) was blocked in the absence of extracellular calcium. SNP (10 nmol/L) or H-R-mediated increases in the free radical generation were prevented by the pretreatment of PMNLs with NO scavenger (hemoglobin), the polyadenine diphosphate (ADP)-ribosylation synthase inhibitor (benzamide) or the calcium channel antagonist (felodipine). A significant augmentation in the nitrite and intracellular calcium levels was observed during hypoxia. Hemoglobin pretreatment also blocked the increase in intracellular calcium levels due to SNP (10 nmol/L) or hypoxia. Thus, increased availability of NO during SNP treatment or H-R, may have led to an ADP-ribosylation-mediated increase in intracellular calcium, thereby increasing the free radical generation from the rat PMNLs. 相似文献
15.
H Nishino A Czurkó K Onizuka A Fukuda H Hida C Ungsuparkorn M Kunimatsu M Sasaki Z Karádi L Lénárd 《Canadian Metallurgical Quarterly》1994,2(3):223-234
The middle cerebral artery (mca) was intraluminally occluded for one hour prior to reperfusion in the rat. Neuronal damage as well as motor imbalance were assessed in both acute and chronic stages with or without neural transplant in the striatum. In acute stage, argyrophil III staining demonstrated "collapsed" dark neurons in the ipsilateral striatum, cortex, reticular thalamus, amygdala and sometimes in the hippocampus. They had shrunken somata and corkscrew-like dendrites. In accordance with the appearance of dark neurons, the immunoreactivity for calpain of endogenous inactive form decreased or disappeared in ischemic areas. In chronic stage, ischemic core area (striatum and cortex) got into porencephaly, and animals made rotations following methamphetamine injection. Neural transplant (fetal striatal cells) was made during 2 to 4 weeks after the ischemia. Once the transplant survived and grew in the striatum, the methamphetamine rotations were attenuated. Using mca ischemic model rats we report here pathophysiological processes that lead to neuronal damage and infarct. Neural transplants into these animals brought partial restoration in motor disturbance, offering a valuable information concerning therapeutic possibility. 相似文献
16.
H Uchino E Elmér K Uchino PA Li QP He ML Smith BK Siesj? 《Canadian Metallurgical Quarterly》1998,812(1-2):216-226
The immunosuppressant drug cyclosporin A (CsA) is considered to be inherently protective in conditions of ischemia, e.g. in hepatic and cardiac tissue. However, investigations of effects of CsA on neuronal tissue have been contradictory, probably because the blood-brain barrier (BBB) is virtually impermeable to CsA. In the present study, we exploited the finding that the insertion of a syringe needle into brain parenchyma obviously disrupts the BBB and allows influx of CsA, and explored whether CsA, given as intraperitoneal injections daily for 1 week before and 1 week after forebrain ischemia of 7 or 10 min duration, ameliorates the damage incurred to the hippocampal CA 1 sector. In other experiments, the needle insertion and the first i.p. injection of CsA were made 30 min after the start of recirculation, with continued daily administration of CsA during the postinsult week. In animals which were injected with CsA in daily doses of 10 mg kg-1, but in which no needle was inserted, the drug failed to ameliorate CA1 damage, whether the ischemia had a duration of 7 or 10 min. Likewise, needle insertion had no effect on CA1 damage if CsA was not administered. In contrast, when CsA was given to animals with a needle insertion, CA1 damage was dramatically ameliorated, whether treatment was initiated 1 week before ischemia, or 30 min after the start of recirculation. The effect of CsA seemed larger than that of any other drug proposed to have an anti-ischemic effect in forebrain/global ischemia. Injection of tritiated CsA in one animal with BBB disruption lead to detectable radioactivity throughout the ventricular system, suggesting a generalised increase of the entry of CsA across the BBB. The results demonstrate that immunosuppressants of the type represented by CsA markedly ameliorate delayed neuronal damage after transient forebrain ischemia, provided that they can pass the BBB. It is discussed whether the effect of the drug is one involving calcineurin, a protein phosphatase, or if CsA counteracts a permeability transition of the inner mitochondrial membrane, assumed to occur in response to adverse conditions, e.g. gradual accumulation of Ca2+ in the mitochondria in the postischemic period. 相似文献
17.
B Jennett 《Canadian Metallurgical Quarterly》1976,5(1):49-52
The diagnosis of diabetes mellitus depends primarily on the doctor being continually aware of this common, important and treatable disease. The previous two articles in this series have described the prevalence of the disease, and the warning signals suggesting that the disease may be present. 相似文献
18.
The objective of this study was to determine whether brief focal ischemia induces ischemic tolerance in rat brain. Focal ischemia was produced in Wistar rats by occluding the middle cerebral artery (MCA) for 20 min at a distal site. Following recovery for 24 h, the animals were subjected to a 10-min episode of forebrain ischemia using a combination of bilateral carotid artery occlusion and systemic hypotension. Histologic injury, assessed after a survival period of 3-4 days, consisted of selective neuronal necrosis bilaterally in cerebral cortex, striatum, hippocampus, and thalamus superimposed upon a small cortical infarct adjacent to the site of MCA occlusion. However, the intensity of neuronal necrosis in the MCA territory of the neocortex ipsilateral to MCA occlusion was markedly less than that in the contralateral MCA cortex. In contrast, the extent of neuronal necrosis in subcortical structures was similar in both hemispheres. Unexpectedly, animals in which the MCA was manipulated, but not occluded, also exhibited a marked reduction of neuronal necrosis in the ipsilateral MCA neocortex following forebrain ischemia. However, in animals with craniotomy alone, forebrain ischemia caused a similar extent of neuronal necrosis in the MCA neocortex of both hemispheres. Transient occlusion of the MCA induced the focal expression of the 72-kDa heat-shock protein (hsp72) in the MCA territory of the neocortex. Limited expression of hsp72 was also detected following sham occlusion, but not after craniotomy alone. These results demonstrate focal induction of ischemic tolerance in rat neocortex that may be related to expression of heat-shock proteins. 相似文献
19.
Acute hepatic failure models with extensive hepatic necrosis and hyperammonemia were developed in small animals. One model is bases on the retrograde infusion of ethanolamine oleate into the common bile duct of guinea pigs and another is based on the infusion of TNF-lipiodol emulsion into the portal tract of rats. 相似文献
20.
In this study the effect of post-treatment with rolipram, an inhibitor of cAMP phosphodiesterase, on neuronal damage following global ischemia was evaluated. Global cerebral ischemia was induced in male Wistar rats by four-vessel occlusion for 20 minutes. Rolipram was administered 6 hours after onset of ischemia and thereafter the following 7 days daily once at a dose of 0.3 or 3.0 mg/kg intraperitoneally. Four weeks after ischemia the amount of intact neurons in the hippocampus and in the striatum was assessed following perfusion fixation. The ischemia-induced neuronal damage in the CA1 sector of the hippocampus and in the striatum was reduced by rolipram at either dose. The present results show that treatment with rolipram reduces ischemic neuronal damage at a therapeutic window of 6 hours. 相似文献