首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
以Mn(CH_3COO)_2、Ni(CH_3COO)_2和CH_3COOLi为原料,采用流变相法制备正极材料LiNi_(0.5)Mn_(1.5)O_4,对烧结温度、时间、以及配锂量等合成条件进行了优化。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电仪对材料的物相、形貌和电化学性能进行了表征。结果表明,在锂源过量5%,850℃煅烧6 h合成的材料具有最好的电化学性能,以0.1 C倍率下放电比容量为127.1 m Ah/g,50次循环后,容量保持率为95.4%。  相似文献   

2.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

3.
江乐锋  王晓清  李畅 《辽宁化工》2013,42(5):523-525,530
随着锂离子电池的发展应用,高比能量、使用寿命长、安全环保的锂电池,已经成为各种便携式电子产品的首选供电,并已逐步进入我们的生活领域。开发大容量和高电压性能的新型正极材料尤为重要。其中锂离子电池正极材料LiNi0.5Mn1.5O4嵌锂电位高达4.7 V,循环性能好,能量效率高,在手机、电动汽车、航空等领域具有很好的发展前景。综述了近年来LiNi0.5Mn1.5O4的一些制备方法以及电化学性能的研究进展。  相似文献   

4.
以二氧化锰、氧化镍和碳酸锂为原料,采用二次焙烧工艺制备了尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗测试(EIS)和充放电测试对LiNi0.5Mn1.5O4正极材料进行了表征。结果表明,合成的材料晶体结构完整,形貌规则,并且表现出优异的电化学性能,其0.2 C首次放电容量为134.6 mA·h/g,5 C首次放电容量为112.9 mA·h/g,5 C循环34次后容量保持率为103.3%。  相似文献   

5.
采用流变相法结合高温热处理制备LiNi0.5Mn1.5O4-xFx(x=0,0.1)。用X射线衍射、扫描电镜和电化学测试等手段对合成材料进行了表征。结果表明,F的掺入抑制了LiNi0.5Mn1.5O4颗粒长大,增强了Li+在固相中的扩散能力,改善了电极与电解质溶液之间的界面性质,有效地提高了LiNi0.5Mn1.5O4的循环性能和倍率性能。0.2C放电时LiNi0.5Mn1.5O3.9F0.1的首次放电容量达到147.8mA.h/g,经80次循环后平均每次循环的容量衰减仅为0.0068%。而0.5C和2.0C放电时首次放电容量达到0.2C放电时的94.2%和83.8%。  相似文献   

6.
LiNi0.5Mn1.5O4正极材料具有高能量密度、三维的锂离子传输通道、无毒、安全性高等优势,成为近些年来锂离子电池领域中最具有研究前景的材料之一.介绍了LiNi05Mn15O4正极材料的结构,综述了LiNi05Mn15O4材料常见的制备和改性方法,着重介绍了LiNi05Mn1.5O4微米级单晶形貌对材料性能的影响,并结合当前研究进展对LiNi0.5Mn1.5O4材料未来的发展趋势进行展望.  相似文献   

7.
以尿素为沉淀剂,以乙二醇为溶剂,通过溶剂热法制备出多级前躯体Ni0.8Mn0.1Co0.1CO3,通过焙烧该前躯体和LiOH·H2O的混合物制备出高比容量的锂离子正极材料LiNi0.8Mn0.1Co0.1O2。采用XRD、FESEM及恒流充放电测试对材料的结构、形貌和电化学进行表征,结果表明,合成的产物形貌均一,有高结晶度。在0.1 C倍率下,放电比容量为194.6 mAh g-1;当放电倍率提高到2.0 C时,该材料仍然具有78.4mAhg-1的放电比容量,并且该材料在各个倍率下具有良好的稳定性。在1.0 C的放电倍率下,经过50次循环,放电容量保持率为92.5%。  相似文献   

8.
本文用溶胶凝胶法制备了LiNi0.5Mn1.5O4正极材料,然后用ZnF2对其进行表面包覆。XRD测试表明,包覆处理没有影响材料的晶体结构,EDS、SEM和TEM测试表明,2wt%ZnF2在LiNi0.5Mn1.5O4表面形成了约7 nm厚的均匀包覆层。对未包覆、1wt%、2wt%、3wt%包覆后的材料进行电化学性能测试对比,发现包覆后都能减弱电解液与基体间的相互作用,较大地稳定电极表面,提高了材料的电化学性能。其中,2wt%ZnF2包覆样品表现出最佳的电化学性能,0.2 C倍率下循环200圈后,其放电比容量维持在109 mAh/g,容量保持率为79.7%;在10 C时,放电比容量依然高达102.1 mAh/g;5 C高倍率下循环500圈后,放电比容量维持在94.2 mAh/g,容量保持率为85.6%。  相似文献   

9.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

10.
机械力化学法制备LiNi0.5Mn1.5O4粉体的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以Li2CO3,MnO2和Ni(OH)2·H2O为原料,采用机械力化学法制备锂离子层状结构正极材料LiNi0.5Mn1.5O4,采用X射线衍射,扫描电镜对其结构和形貌进行了表征.结果表明粉磨6 h可制备能在较低温度下发生固相反应的前驱体;前驱体于800℃煅烧6 h制备得到具有α-NaFeO2型层状有序结构的单相LiNi0.5Mn1.5O4.样品的首次放电容量为80 mAh·g-1.  相似文献   

11.
施凯  陈友存 《广东化工》2016,(11):48-50
我们用柠檬酸辅助的溶胶法、在800℃和1000℃的最终煅烧温度下,生产高压阴极Li Ni_(0.4)Ru_(0.05)Mn_(1.5)O_4。通过同步加速器辐射、等离子体-发射光谱以及扫描电子显微镜分析、高分辨率粉末衍射来描绘材料的结构、化学组成及形态特点。我们通过X射线吸收光谱研究确认尖晶石内是否有钌掺杂、并比较过渡金属的氧化态。Li Ni_(0.4)Ru_(0.05)Mn_(1.5)O_4粉末在1000℃条件下合成,其初始容量为-139 m Ah·g~(-1),在3.5~5.0伏、C/2充电-放电率条件下,经过300次循环后容量保持率为(初始容量的)84%,这表明其大电流放电能力及循环稳定性非常好。  相似文献   

12.
微乳液法是锂离子电池正极材料的一种新型制备方法。通过将反应物原料配制成微乳液,然后加入沉淀剂H_2C_2O_4溶液,使反应在其水核内部比较温和地发生,有效地控制产物的尺寸和形貌,制备得到形貌均匀的径向纳米尺寸产物LiNi_(0.5)Mn_(1.5)O_4正极材料。测试产物的电化学性能,结果显示:在0.5,10和20C倍率下,首次放电比容量分别为130.03,113.6和101.4m Ah g~(-1),经过100次循环后分别保持127.9,102.2和85.1m Ah g~(-1)的放电比容量,其容量保持率可达98.4%,89.9%和83.9%,说明这种形貌均匀的径向纳米尺寸能够极大地缩短电极反应中电子和锂离子的传输距离,并且其较大的比表面积可以为电极材料和电解液提供更大的接触面积,从而显著提高锂离子脱出和嵌入的速度,使电极材料表现出优异的电化学性能。  相似文献   

13.
锂离子电池正极材料的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
李恒  张丽鹏  于先进 《硅酸盐通报》2012,31(6):1486-1490
锂离子电池具有工作电压高、能量密度大、工作温度范围宽、安全性能好等众多优点,因而成为近年来倍受关注的电动汽车动力电源之一.随着正极材料种类的更新,制备过程中多种改性方法的采用,如掺杂与包覆导电剂来提高正极导电率,减小粒径尺寸加快锂离子传导速率等方法,使锂离子电池电化学性能得到提高.本文综述了几种常见锂离子电池正极材料的研究现状与进展,重点对LiCoO2、LiNiO2、LiMn2O4、LiFePO4几种正极材料的晶体结构、性能、合成方法、以及掺杂与包裹改性进行了介绍,并对其发展趋势进行了展望.  相似文献   

14.
尖晶石LiMn2O4正极材料的研究进展   总被引:8,自引:2,他引:8  
周燕芳  钟辉 《化工进展》2003,22(2):140-145
综述了近年来锂离子电池正极材料尖晶石LiMn2O4的研究进展。主要阐述了LiMn2O4的制备方法、晶体结构、电性能以及改性方法等方面的发展状况。  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号