首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

2.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

3.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

4.
LiNi_(0.5)Mn_(1.5)O_4具有三维锂离子传输通道、4.7V的高平台电压,成为最有潜力的锂离子动力电池正极材料之一。但是,过渡金属Mn易溶于电解液,使电池循环性能和倍率性能变差。总结了Li_(0.5)Mn_(1.5)O_4正极材料的改性进展,在此基础上,提出了材料改性的研究方向。  相似文献   

5.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

6.
用均匀设计法优化了Co~(3+)、Li~+、F~-共掺杂的LiNi_(0.5)Mn_(1.5)O_4的组成和性能,并用XRD、SEM和恒电流充放电技术研究掺杂对材料结构、形貌和充放电性能的影响。结果表明,共掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂离子以固溶体形式存在,Co~(3+)、Li~+和F~-共掺杂能同时提高材料的放电比容量和循环性能,其中Li_(1.02)Co_(0.07)Ni_(0.41)Mn_(1.5)O_(3.955)F_(0.045)的放电容量为145.4 m A·h/g,50个循环后容量保持率为97.1%。  相似文献   

7.
采用工业级碳酸锂、三氧化二镍和电解二氧化锰为原料合成了镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4),研究了煅烧温度对材料性能的影响。采用X射线衍射、扫描电镜、激光粒度仪、放电循环曲线、循环伏安曲线和交流阻抗谱图表征了颗粒的结构、形貌、粒度分布和电化学性能。结果表明:制备的5 V镍锰酸锂均为尖晶石结构,但含有杂质相Li_xNi_(1-x)O、Li_xNi_yMnzO和Ni_xO。在煅烧温度为850℃、煅烧时间为12 h条件下制备的样品具有最佳的结构形貌和电化学性能,在放电倍率为1C、2C、5C条件下,LiNi_(0.5)Mn_(1.5)O_4对应的首次放电容量分别为120.8、118.1、111.2 m A·h/g,且循环200次仍具有优异的容量保持率。  相似文献   

8.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

9.
《应用化工》2017,(1):10-13
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

10.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号