首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在温度35℃pH值7.0左右,HRT为30 h的厌氧反应器中,研究了厌氧氨氧化与反硝化的耦合作用.进水氨氮为70~120 mg/L左右,COD为800~1200 mg/L左右条件下,将含亚硝酸盐和硝酸盐浓度人工配水按厌氧进水配比引入反应器中,氨氮、亚硝态氮进水浓度分别为75.43 mg/L、99.87 mg/L时,总氮负荷为233.82 mg/(L·d),考察不同进水配比R(0~100%)对厌氧反应器的脱氮除碳效能影响.实验结果表明,在进水配比为75%条件下,系统氨氮、亚硝态氮去除率达55.71%、63.65%,TN去除率最高达64.56%,COD去除率达80%左右.结果表明,适当的进水配比,不仅可以达到稀释厌氧进水的作用,还可以促使厌氧氨氧化与反硝化的协同脱氮除碳效果.  相似文献   

2.
为了实现煤气化废水的经济有效脱氮,分别研究了单独亚硝化及其与厌氧氨氧化组合工艺对实验室模拟废水和实际煤气化废水的脱氮性能,分析了废水中苯酚对亚硝化反应器运行的影响及其自身转化。结果表明:质量浓度为7~50 mg/L的苯酚对亚硝化系统首先产生抑制,但随着运行时间延长,系统性能逐渐恢复。在处理实际煤气化废水时,逐渐增加进水中煤气化废水的比例,废水中毒性物质对亚硝化过程的影响能够被克服,亚硝化反应器可以实现稳定运行。在亚硝化反应器中,亚硝态氮积累率达90%左右,COD去除率达98%,反硝化脱氮对总氮的去除率达到60%左右;组合工艺中亚硝化反应器和厌氧氨氧化反应器均能够稳定运行,厌氧氨氧化脱氮率维持在70%左右;实际煤气化废水亚硝化-厌氧氨氧化全程氮去除率平均达到86%。  相似文献   

3.
作为低碳节能的生物脱氮工艺,厌氧氨氧化引进国内已有十余年的历史,已有多家食品加工龙头企业从国外引进了十多套厌氧氨氧化脱氮系统。这些系统大部分运行良好,但也有少数脱氮效果不稳定,未能达到预期效果。以典型食品加工废水厌氧氨氧化处理系统为例,分析确定了该脱氮系统失效原因在于进水氨氮低于系统设计要求,难以形成稳定的亚硝氮积累,破坏了一体式部分亚硝化-厌氧氨氧化(PN-A)系统的稳定高效脱氮,导致系统出水总氮去除率下降,同时出水硝氮明显升高。为解决此难题,采用高效亚硝化反应器促进食品加工废水快速稳定亚硝化,一周后平均亚硝化率可达92.92%,平均出水亚硝氮为84.09 mg/L,平均亚硝化产率约为0.41 kg/(m3·d),保障了厌氧氨氧化系统亚硝氮基质供应,并在小试Anammox脱氮系统实现总氮去除率达84.52%,出水总氮低于15 mg/L,平均总氮去除负荷0.56 kg/(m3·d)。研究结果可为解决当前国内食品加工厌氧氨氧化脱氮系统失效问题提供新的思路。  相似文献   

4.
厌氧氨氧化反应器启动和影响因素实验研究   总被引:1,自引:0,他引:1  
《广州化工》2021,49(6)
采用自制的UASB(升流式厌氧污泥床)反应器,接种产甲烷颗粒污泥,以自配含有氨氮和亚硝态氮的水为进水,来研究厌氧氨氧化反应的启动和影响因素。实验结果表明:反应器运行150后,氨氮(NH~+_4-N)和亚硝态氮(NO~-_2-N)的去除率稳定在50%左右,硝态氮(NO~-_3-N)有明显增加,表明厌氧氨氧化反应启动成功;在温度为30~35℃,pH为7~7.5,水力停留时间为24 h, COD为100~200 mg/L,NH~+_4为89.3 mg/L,NO~-_2为100 mg/L,即NH~+_4:NO~-_2=1:1.12时,厌氧氨氧化反应速率最快。  相似文献   

5.
研究了同步亚硝化、厌氧氨氧化和反硝化(SNAD)-生物移动床(MBBR)工艺对煤气化废水脱氮的处理效果。结果表明,通过控制低DO含量和低污泥停留时间(SRT)的方法防止了好氧反应器中硝化菌的积累,为后续SNAD反应器提供了合适的进水。煤气化废水经好氧反应器去除COD后进入SNAD MBBR进行脱氮,控制SNAD反应器温度为30~33℃,DO的质量浓度为0.5~0.8 mg/L,p H为7.5~7.7,HRT为24 h。TN去除率达到90.7%,出水TN、NH_4~+-N的质量浓度分别低于20、5 mg/L,COD去除率达到89.6%,出水COD低于60 mg/L。运行25 d后,SNAD反应器中厌氧氨氧化菌的种类由接种时的Candidatus Brocadia变为Candidatus Kuenenia。  相似文献   

6.
浙江大学开发的短程硝化-厌氧氨氧化技术,适用于高浓度含氨废水的脱氮处理。经实际应用检验,该技术具有脱氮效果好、投资省、运行成本低和剩余污泥产量少、无需外加碳源等优点,值得企业关注。该技术采用高效生物硝化反应器,把一部分废水中的氨氮转化为亚硝氮,用作厌氧氨氧化的电子受体;把另一部分废水中的氨氮直接用作  相似文献   

7.
亚硝化的实现及与厌氧氨氧化联合工艺研究   总被引:1,自引:0,他引:1  
在高氨氮废水处理方面,厌氧氨氧化工艺与传统硝化-反硝化生物脱氮工艺相比具有较高的脱氮效能,因此近几年得到了快速的发展.但是厌氧氨氧化需要亚硝态氮作为电子受体,而目前实现亚硝酸盐的积累一直是废水脱氮技术中的难点.为此在综述目前实现亚硝化控制的因数研究进展的基础之上,为适应厌氧氨氧化需求,讨论了将其与厌氧氨氧化工艺相结合时,控制参数的优化策略.以及对亚硝化-厌氧氨氧化联合工艺的可能性进行综述和展望.  相似文献   

8.
利用上向流生物膜反应器进行了厌氧氨氧化(ANAMMOX)工艺的启动及运行研究。在常温下,以含氨氮模拟废水为进水,采用反硝化菌成功地培养出ANAMMOX菌,启动期间进水氨氮和亚硝态氮浓度分别为8-36mg/L和8-43mg/L,启动结束氨氮去除率稳定在52%以上。研究表明,厌氧氨氧化反应的适宜温度在20℃以上,pH值为7.3~8.2,氨氮容积负荷处于0.14~0.25kg/(m^3·d)之间,C/N比在2.6—4.7之间。根据Monod方程和实验,得到ANAMMOX反应动力学模型,与实验数据相关关系显著,具有实际参考价值。  相似文献   

9.
ASBBR反应器厌氧氨氧化反应稳定性研究   总被引:1,自引:0,他引:1  
利用已经成功启动的ASBBR反应器,通过不同的进水基质浓度,不同进水亚硝态氮、氨氮质量比和不同冲水比3个因素的交替变化,研究了厌氧氨氧化反应器脱氮效能稳定性的影响.当进水亚硝态氮与氨氮质量比在1~13的范围内变动时,对反应器内厌氧氨氧化反应的脱氮效能几乎没有影响,表明ASBBR反应器具有较高的抗负荷冲击能力.当进水后反应器内亚硝态氮质量浓度大于80mg·L~(-1)时,将导致反应器的总氮去除率下降,并且随着亚硝态氮浓度的增加,脱氯效果会越来越差.同时研究还表明水力冲击不会引起厌氧氨氧化反应器出现微生物流失,但随着水利负荷的增加,厌氧氨氧化细菌时新环境适应时间将会延长,导致相同周期内反应器脱氮效能的下降.  相似文献   

10.
杨世东  廖路花 《硅酸盐通报》2016,35(8):2647-2653
进水稀释配比R为75%的条件下,研究了厌氧氨氧化与反硝化的耦合作用.进水氨氮为(140±5) mg/L,COD为(900 +5) mg/L,通过改变厌氧反应器中亚硝酸盐氮与氨氮的质量浓度比(化学计量比),以考察不同亚硝态氮浓度对厌氧段总氮与有机物的去除效果.实验结果表明,在化学计量比为1.6的条件下,TN去除率高达73.58%,COD去除率为81.61%.结果表明,合适的化学计量比,可以强化厌氧氨氧化与反硝化的协同作用,提高系统的脱氮除碳效能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号