首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

2.
近年来随着电动汽车等高功率密度、高比能量的极大需求,传统的正极材料已经不能满足这些要求。且由于LiNi_(0.5)Mn_(1.5)O_4具有高电压和高能量密度等优点,该材料的研究也逐渐增多,在此基础上文章阐述了LiNi_(0.5)Mn_(1.5)O_4材料合成方法的研究进展。不同制备方法得到的材料电化学性能也有所差异,根据所需产品的性能采用相应的制备方法并对其进行改进也是今后研究的重要课题。  相似文献   

3.
采用流变相法结合高温热处理制备LiNi0.5Mn1.5O4-xFx(x=0,0.1)。用X射线衍射、扫描电镜和电化学测试等手段对合成材料进行了表征。结果表明,F的掺入抑制了LiNi0.5Mn1.5O4颗粒长大,增强了Li+在固相中的扩散能力,改善了电极与电解质溶液之间的界面性质,有效地提高了LiNi0.5Mn1.5O4的循环性能和倍率性能。0.2C放电时LiNi0.5Mn1.5O3.9F0.1的首次放电容量达到147.8mA.h/g,经80次循环后平均每次循环的容量衰减仅为0.0068%。而0.5C和2.0C放电时首次放电容量达到0.2C放电时的94.2%和83.8%。  相似文献   

4.
以二氧化锰、氧化镍和碳酸锂为原料,采用二次焙烧工艺制备了尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗测试(EIS)和充放电测试对LiNi0.5Mn1.5O4正极材料进行了表征。结果表明,合成的材料晶体结构完整,形貌规则,并且表现出优异的电化学性能,其0.2 C首次放电容量为134.6 mA·h/g,5 C首次放电容量为112.9 mA·h/g,5 C循环34次后容量保持率为103.3%。  相似文献   

5.
LiNi0.5Mn1.5O4正极材料具有高能量密度、三维的锂离子传输通道、无毒、安全性高等优势,成为近些年来锂离子电池领域中最具有研究前景的材料之一.介绍了LiNi05Mn15O4正极材料的结构,综述了LiNi05Mn15O4材料常见的制备和改性方法,着重介绍了LiNi05Mn1.5O4微米级单晶形貌对材料性能的影响,并结合当前研究进展对LiNi0.5Mn1.5O4材料未来的发展趋势进行展望.  相似文献   

6.
采用共沉淀法合成LiNi0.5Mn1.5O4正极材料并对其进行退火处理,研究退火温度对材料电化学性能的影响。结果表明,退火温度会导致LiNi0.5Mn1.5O4正极材料中Mn3+含量的变化,进而影响材料的倍率性能和循环性能。其中,625 ℃退火8 h所制备的样品表现出最好的电化学性能,其0.2 C倍率首次放电容量为130.8 mA·h/g;1 C倍率首次放电容量为126.5 mA·h/g,50次循环后,容量保持率高达100.8%。  相似文献   

7.
机械力化学法制备LiNi0.5Mn1.5O4粉体的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以Li2CO3,MnO2和Ni(OH)2·H2O为原料,采用机械力化学法制备锂离子层状结构正极材料LiNi0.5Mn1.5O4,采用X射线衍射,扫描电镜对其结构和形貌进行了表征.结果表明粉磨6 h可制备能在较低温度下发生固相反应的前驱体;前驱体于800℃煅烧6 h制备得到具有α-NaFeO2型层状有序结构的单相LiNi0.5Mn1.5O4.样品的首次放电容量为80 mAh·g-1.  相似文献   

8.
江乐锋  王晓清  李畅 《辽宁化工》2013,42(5):523-525,530
随着锂离子电池的发展应用,高比能量、使用寿命长、安全环保的锂电池,已经成为各种便携式电子产品的首选供电,并已逐步进入我们的生活领域。开发大容量和高电压性能的新型正极材料尤为重要。其中锂离子电池正极材料LiNi0.5Mn1.5O4嵌锂电位高达4.7 V,循环性能好,能量效率高,在手机、电动汽车、航空等领域具有很好的发展前景。综述了近年来LiNi0.5Mn1.5O4的一些制备方法以及电化学性能的研究进展。  相似文献   

9.
本文用溶胶凝胶法制备了LiNi0.5Mn1.5O4正极材料,然后用ZnF2对其进行表面包覆。XRD测试表明,包覆处理没有影响材料的晶体结构,EDS、SEM和TEM测试表明,2wt%ZnF2在LiNi0.5Mn1.5O4表面形成了约7 nm厚的均匀包覆层。对未包覆、1wt%、2wt%、3wt%包覆后的材料进行电化学性能测试对比,发现包覆后都能减弱电解液与基体间的相互作用,较大地稳定电极表面,提高了材料的电化学性能。其中,2wt%ZnF2包覆样品表现出最佳的电化学性能,0.2 C倍率下循环200圈后,其放电比容量维持在109 mAh/g,容量保持率为79.7%;在10 C时,放电比容量依然高达102.1 mAh/g;5 C高倍率下循环500圈后,放电比容量维持在94.2 mAh/g,容量保持率为85.6%。  相似文献   

10.
彭涛  张海朗 《应用化工》2013,(3):421-424
采用溶胶凝胶法制备了LiNi0.7Co0.3O2。结果表明,煅烧温度为800℃、时间为12 h、Li/(Ni+Co)=1.05的正极材料LiNi0.7Co0.3O2具有α-NaFeO2型的六方晶体结构,在0.1 C下,首次充放电比容量分别为218.0 mAh/g和190.2 mAh/g,首次充放电效率为87.2%,经过20次循环仍有171.5 mAh/g,容量保持率为90.3%。  相似文献   

11.
微乳液法是锂离子电池正极材料的一种新型制备方法。通过将反应物原料配制成微乳液,然后加入沉淀剂H_2C_2O_4溶液,使反应在其水核内部比较温和地发生,有效地控制产物的尺寸和形貌,制备得到形貌均匀的径向纳米尺寸产物LiNi_(0.5)Mn_(1.5)O_4正极材料。测试产物的电化学性能,结果显示:在0.5,10和20C倍率下,首次放电比容量分别为130.03,113.6和101.4m Ah g~(-1),经过100次循环后分别保持127.9,102.2和85.1m Ah g~(-1)的放电比容量,其容量保持率可达98.4%,89.9%和83.9%,说明这种形貌均匀的径向纳米尺寸能够极大地缩短电极反应中电子和锂离子的传输距离,并且其较大的比表面积可以为电极材料和电解液提供更大的接触面积,从而显著提高锂离子脱出和嵌入的速度,使电极材料表现出优异的电化学性能。  相似文献   

12.
以5V高电压LiNi0.5Mn1 5O4为正极材料,高安全性Li4Ti5O12为负极材料制备了LiNi0.5Mn1.5O4/Li4Ti5O12全电池,重点研究了正负极容量配比对电池电化学性能的影响.其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 mAh·g-1,循环200次的容量保持率为88%;在2C电流下,P/N=1.4的电池的最高放电比容量为135.2 mAh·g-1,循环740次的容量保持率为91.1%.P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关.  相似文献   

13.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

14.
王海龙 《广东化工》2013,(23):16-16,32
采用固相烧结法合成了Nb掺杂的LiNi0.5Mn1.5O4正极材料.通过XRD测试和充放电测试表征了材料的晶体结构和电化学性能.结果表明Nb掺杂容易产生LiNbO3杂质,并影响其放电能力,少量Nb掺杂获得的LiNi0.425Nb0.03Mn1.5O4展示出良好的大电流放电性能.  相似文献   

15.
王海龙 《山东化工》2013,(11):15-16,19
采用固相烧结法成功合成了Rh掺杂的LiNi0.5Mnl.504正极材料。通过XRD测试和充放电测试表征了材料的晶体结构和电化学性能。结果表明Rh掺杂可以有效提高LiNi05Mnl504在大电流密度(5c和10c)条件下的放电电量,并可以显著改善IOC充放电条件下的循环性能。  相似文献   

16.
王海龙 《河南化工》2013,(16):40-42
采用聚合物辅助方法合成了纳米级的LiNi0.5Mn1.5O4颗粒.通过XRD测试,扫描电镜观察和充放电测试表征了材料的晶体结构、形貌和电化学性能.结果表明烧结温度对于颗粒的尺寸形貌和结晶度具有重要的影响作用,并影响其放电能力,800℃烧结获得的LiNi0.5Mn15O4具有更好的结晶性并且展示出更好的电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号