首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fine Si3N4-SiC composite powders were synthesized in various SiC compositions to 46 vol% by nitriding combustion of silicon and carbon. The powders were composed of α-Si3N4, β-Si3N4, and β-SiC. The reaction analysis suggested that the SiC formation is assisted by the high reaction heat of Si nitridation. The sintered bodies consisted of uniformly dispersed grains of β-Si3N4, β-SiC, and a few Si2N2O.  相似文献   

2.
A fracture mechanics approach was used to investigate the high strength of hot-pressed Si3N4. Room-temperature flexural strengths, fracture energies, and elastic moduli were determined for material fabricated from α- and β-phase Si3N4 powders. When the proper powder preparation technique was used, α-phase powder resulted in a high fracture energy (69,000 ergs/cm2), a high flexural strength (95,000 psi), and an elongated (fiberlike) grain morphology, whereas β-phase powder produced a low fracture energy (16,000 ergs/cm2), a relatively low strength (55,000 psi), and an equiaxed grain morphology. It was hypothesized that the high strength of Si3N4 hot-pressed from α-phase powder results from its high fracture energy, which is attributed to the elongated grains. High-strength Si3N4 has directional properties caused, in part, by the elongated grain structure, which is oriented preferentially with respect to the hot-pressing direction.  相似文献   

3.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

4.
The densification behavior of Si3N4 containing MgO was studied in detail. It was concluded that MgO forms a liquid phase (most likely a magnesium silicate). This liquid wets and allows atomic transfer of Si3N4. Evidence of a second-phase material between the Si3N4 grains was obtained through etching studies. Transformation of α- to β-Si3N4 during hot-pressing is not necessary for densification.  相似文献   

5.
Advanced sintering techniques for consolidation of Si3N4 powders in the presence of an oxygen-rich liquid phase(s) require high temperatures and usually high nitrogen pressures. A stability diagram is constructed for Si3N4 as a function of the partial pressures of nitrogen (PN2) and silicon (PSi). High PN2 (20 to 100 atm) increases the stability of Si3N4 and the oxygen-rich liquid phase by reducing the PSi and PSi0, respectively. The region of high sinterability is outlined for submicrometer Si3N4 powders containing 7 wt% BeSiN2 and 7 wt% SiO2 as densification aids .  相似文献   

6.
We report here the study on tribological behavior of α-Sialon in aqueous medium. The results derived from a wide range of test conditions are briefly discussed. A reduction in friction coefficient from 0.7 to 0.03 and a decrease in wear rate by two orders of magnitude were achieved under low load (9.8 N) and high speed (>0.54 m/s) conditions. The tribological behavior of α-Sialon/Si3N4 ceramics was then compared with Si3N4/Si3N4 tribopairs.  相似文献   

7.
Silicon nitride (Si3N4) was synthesized by a selective combustion reaction of silicon powder with nitrogen in air. The α/β-Si3N4 ratio of the interior product could be tailored by adjusting the Si3N4-diluent content in the reactant mixtures. The synthetic β-Si3N4 showed a well-crystallized rod-like morphology. Mechanical activation greatly enhanced the reactivity of silicon powder, and the slow oxidation of silicon at the sample surface promoted the combustion reaction in air. The formation mechanism of Si3N4 was analyzed based on a proposed N2/O2 diffusion kinetic model, and the calculated result is in good agreement with the experimental phenomenon.  相似文献   

8.
Thin films of amorphous Si3N4 were prepared by the rf-sputtering method, and the effects of titanium and chlorine additives on its crystallization were examined. When Ti-doped amorphous Si3N4 was heated, TiN precipitated at >1100°C; the TiN precipitates promoted the conversion of amorphous Si3N4 to β-Si3N4. Chlorine led to preferential conversion of amorphous Si3N4 to α-Si3N4.  相似文献   

9.
The phase relations in the Si3N4-rich portion of the Si3N4–AlN–Y2O3 rystem were investigated using hot-pressed bodies. The one-phase fields of β3 and α, the twophase fields of β+α, β+M (M=melilite), and α+M, and the three-phase fields of β+α+M were observed in the Si3N4-rich portion. The α- and β-sialons are not two different compounds but an allotropic transformation phase of the Si–Al–O–N system, and an α solid solution expands and stabilizes with increasing Y2O3 content. Therefore, the formulas of the two sialons should be the same.  相似文献   

10.
[(Trimethylsilyl)amino]titanium trichloride, (CH3)3-SiNHTiClj, was isolated as a red-orange crystalline solid in 58% yield from the reaction of TiCl4 with [(CH3)3Si]2NH in 1:1 molar ratio in dichloromethane at —78°C. Pyrolysis of (CH3)3SiNHTiCl3 at 600°C furnished titanium nitride. This precursor is suitable for the preparation of composites and was employed to prepare Si3N4-TiN and Ti-TiN powders by adding Si3N4 particles or titanium powders to a solution of (CH3), SiNHTiCl3 in dichloromethane, drying and pyrolyzing the resulting solid. This precursor also has been used as a binder to prepare Si3N4-TiN and Ti-TiN bodies. High-resolution transmission electron microscopic studies of the Si3N4-TiN composite showed that titanium nitride is concentrated on the surface of the Si3N4 particles.  相似文献   

11.
Fine Si3N4 powders were prepared by the combustion reaction of an Si powder compact undez 10 MPa nitrogen pressure. Addition of Si3N4 powder to the starting Si promoted conversion of the reactants to homogeneous Si3N4 particles. Submicrometer SisN4powders with a uniform size distribution around 0.5 μm were obtained from a 1.8Si-0.4Si3N4 mixture (molar ratio); they were free of residual Si.  相似文献   

12.
The high-temperature flexural strength of hot-pressed silicon nitride (Si3N4) and Si3N4-whisker-reinforced Si3N4-matrix composites has been measured at a crosshead speed of 1.27 mm/min and temperatures up to 1400°C in a nitrogen atmosphere. Load–displacement curves for whisker-reinforced composites showed nonelastic fracture behavior at 1400°C. In contrast, such behavior was not observed for monolithic Si3N4. Microstructures of both materials have been examined by scanning and transmission electron microscopy. The results indicate that grain-boundary sliding could be responsible for strength degradation in both monolithic Si3N4 and its whisker composites. The origin of the nonelastic failure behavior of Si3N4-whisker composite at 1400°C was not positively identified but several possibilities are discussed.  相似文献   

13.
A thorough analysis of a silicon nitride (Si3N4)-bonded SiC sidelining material from a Hall-Heroult electrolysis cell is reported. Phase composition before and after chemical degradation of the material is obtained by quantitative analysis using Rietveld refinement of X-ray diffraction data and chemical analysis. The main degradation products as a result of the oxidation of Si3N4 binder phase are Si2ON2 in the upper part and Na2SiO3 in the lower part of the sidelining. The microstructure of α-Si3N4 (needle) and β-Si3N4 (shell) as well as the degradation products Si2ON2 (fiber) and Na2SiO3 (flake) were revealed by electron microprobe analysis. Chemical reactions and degradation mechanisms are proposed based on the presented findings. The degradation in the lower part is more severe than that in the upper part because Na diffusion from the cathode enhances the oxidation of Si3N4. The degradation changes the physical properties of Si3N4-bonded SiC such as density and porosity.  相似文献   

14.
The development of microstructure in hot-pressed SiaN4 was studiehd for a typical Si3N4 powder with and without BeSiN2 as a densification aid. The effect of hot-pressing temperature on density, α- to β-Si3N4 conversion and specific surface area showed that BeSiN2 appears to increase the mobility of the system by enhancing densification, α- to β-Si3N4 transformation, and grain growth at temperatures between 1450° and 1800°. These processes appear to occur in the presence of a liquid phase.  相似文献   

15.
The synthesis and structure of a monodispersed spherical Si3N4/SiC nanocomposite powder have been studied. The Si3N4/SiC nanocomposite powder was synthesized by heating under argon a spherical Si3N4/C powder. The spherical Si3N4/C powder was prepared by heating a spherical organosilica powder in a nitrogen atmosphere and was composed of a mixture of nanosized Si3N4 and free carbon particles. During the heat treatment at 1450°C, the Si3N4/C powder became a Si3N4/SiC composite powder and finally a SiC powder after 8 h, while retaining its spherical shape. The composition of the Si3N4/SiC composite powder changed with the duration of the heat treatment. The results of TEM, SEM, and selected area electron diffraction showed that the Si3N4/SiC composite powder was composed of homogeneously distributed nanosized Si3N4 and SiC particles.  相似文献   

16.
The effects of TiC addition to Si3N4 on microstructure and the chemical aspects of Si3N4–TiC interphase reaction were investigated in samples hot-pressed at 1800°C in Ar and N2. Composition of a TiC1–xNx solid solution was predicted based on thermodynamic calculation, with titanium carbonitride taken to be an ideal solid solution. The predicted value of x = 0.7 is slightly higher than that derived from the measured lattice parameter and Vegard's law (x = 0.67). Four distinguishable areas were observed in samples hot-pressed in nitrogen atmosphere. They were identified as β-Si3N4, mixtures of TiC and titanium carbonitride solid solution, SiC with twins, and iron silicide. As the duration of hot-pressing increased, more titanium carbonitride was formed, while less TiC phase remained. Thermodymanic calculations indicate one source of nitrogen gas came from the decomposition of Si3N4. The TiC particles also became more irregular, and reactants were found inside or between TiC as the hot-pressing time was extended. Silicon carbide was not detected in samples which were hot-pressed in argon atmosphere; however, numerous pores were found around TiC.  相似文献   

17.
Sintering kinetics of the system Si3N4-Y2O3-Al2O3 were determined from measurements of the linear shrinkage of pressed disks sintered isothermally at 1500° to 1700°C. Amorphous and crystalline Si3N4 were studied with additions of 4 to 17 wt% Y2O3 and 4 wt% A12O3. Sintering occurs by a liquid-phase mechanism in which the kinetics exhibit the three stages predicted by Kingery's model. However, the rates during the second stage of the process are higher for all compositions than predicted by the model. X-ray data show the presence of several transient phases which, with sufficient heating, disappear leaving mixtures of β ' -Si3N4 and glass or β '-Si3N4, α '-Si3N4, and glass. The compositions and amounts of the residual glassy phases are estimated.  相似文献   

18.
The synthesis of solid solutions of AlN–SiC was investigated through the combustion reaction between Si3N4, aluminum, and carbon powders and nitrogen gas at pressures ranging from 0.1 to 6.0 MPa. The combustion reaction was initiated locally and then the wave front propagated spontaneously, passing through the cylindrical bed containing the loose powder. In the presence of Si3N4 as a reactant, it was feasible to synthesize solid solutions at an ambient pressure (0.1 MPa). The relationship between nitrogen pressure and full-width at half-maximum of the (110) peak of the product showed that lower pressures produced more-homogeneous solid solutions. Some aspects of formation of the AlN–SiC solid solutions were discussed with special emphasis on the influence of nitrogen pressure and reactant stoichiometry.  相似文献   

19.
The rate of dissolution of β-Si3N4 into an Mg-Si-O-N glass was measured by working with a composition in the ternary system Si3N4-SiO2-MgO such that Si2N2O rather than β-Si3N4 was the equilibrium phase. Dissolution was driven by the chemical reaction Si3N4(c)+SiO2( l )→Si2N2O(c). Analysis of the kinetic data, in view of the morphology of the dissolving phase (Si3N4) and the precipitating phase (Si2N2O), led to the conclusion that the dissolution rate was controlled by reaction at the crystal/glass interface of the Si3N4, crystals. The process appears to have a fairly constant activation energy, equal to 621 ±40 kJ-mol−1, at T=1573 to 1723 K. This large activation energy is believed to reflect the sum of two quantities: the heat of solution of β-Si3N4 hi the glass and the activation enthalpy for jumps of the slower-moving species across the crystal/glass interface. The data reported should be useful for interpreting creep and densification experiments with MgO-fluxed Si3N4.  相似文献   

20.
The subsolidus phase relationships in the system Si,Al,Y/N,O were determined. Thirty-nine compatibility tetrahedra were established in the region Si3N4─AIN─Al2O3─Y2O3. The subsolidus phase relationships in the region Si3N4─AIN─YN─Y2O3 have also been studied. Only one compound, 2YN:Si3N4, was confirmed in the binary system Si3N4─YN. The solubility limits of the α'─SiAION on the Si3N4─YN:3AIN join were determined to range from m = 1.3 to m = 2.4 in the formula Y m /3Si12- m Al m N16. No quinary compound was found. Seven compatibility tetrahedra were established in the region Si3N4─AIN─YN─Y2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号