首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of lamellar structure is crucial for the creep resistance of TiAl alloys, but degradation of the lamellar structure is unavoidable at high temperatures. The degradation of the lamellar structure in PST crystals of Ti-48mol.%Al was studied during high temperature exposure (annealing and creep testing) to examine how to make a stable lamellar structure with high creep deformation resistance. Since the six orientation variants of γ lamellae are nucleated independently of the adjoining lamellae, pseudo twin and 120° rotational fault boundaries are most frequently observed at the initial stage of lamellar formation. The preferential removal of high energy (pseudo twin and 120° rotational fault) boundaries during the evolution of lamellar structure results in the highly probable appearance of a true twin boundary at a later stage of lamellar evolution. The coarsening of lamellar spacing and the spheroidization of the lamellae are the major degradation events occurring during creep deformation, and the migration of the lamellar boundaries brings both of them about. The lamellar structures of TiAl alloy contain four types of lamellar boundaries. The stability of the four types of boundaries decreases in the following order: γ/α2 > true twin > pseudo twin > or=120° rotational fault boundaries. The γ/α2 boundary has the highest stability (lowest mobility), and the high density of γ/α2 boundaries is proposed to make a stable lamellar structure with good creep resistance. A material having the high density of γ/α2 boundaries was produced through the heat treatment of a PST crystal in the α+γ two-phase regime. The excellent creep properties of the material were proven through creep tests of hard oriented PST crystals made of the material. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials,” organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   

2.
Constant tensile stress creep tests under the condition of 760~816°C/172~276 MPa in an air environment are conducted, and the microstructural evolution during primary creep deformation at the creep condition of 816°C/172 MPa was observed by transmission electron microscopy (TEM) for the lamellar structured Ti-45. 5Al-2Cr-2.6Nb-0.17W-0.lB-0.2C-0.15Si (at.%) alloy. The amount of creep strain deformed during primary creep stage is considered to be the summation of the strains occurred by gliding of initial dislocations and of newly generated dislocations. Creep rate controlling process within the primary stage seems to be shifting from the initial dislocation climb controlled to the generation of the new dislocations by the phase transformation of 2 to as creep strain increases.  相似文献   

3.
Finer lamellar spacing in the lamellar structure of a Ti–45Al–2Nb–2Mn + 0.8 vol.%TiB2 (45XD) alloy does improve the primary creep resistance. However, the unstable nature of the fine plate contributes largely to the degradation of the lamellar structure and a rapid increase in the tertiary creep rate, indicating that a fine lamellar structure has a detrimental effect on the long-term creep.  相似文献   

4.
Comprssion creep tests of a Ti-48%Al (mole fraction)alloy were carried out at 1150K with soft-orientated PST crystal.Parallel twinning took place during the creep.Changes in lamellar microstructure caused by the parallel twinning were investigated.and their effects on creep deformation behavior were discussed.The results show that the parallel twinning occurs in early stage of creep,and makes significant contribution to creep strain in the domains favorably oriented for the twinning.The nucleation of parallel twins finishes at a strain of about 3%.There is a critical resolved shear stress for parallel twinning,and it is about 50MPa in the Ti-48%Al PST crystals at 1150K.Te activity of parallel twinning increases with increasing applied stress or in a coarse lamellar material.The addition of parallel twins reduces the average value of lamellar spacing.In general,the refinement of lamellar structure should improve creep resistance.However the strengthening by parallel twinning is not evident in creep of the soft PST crystals because the soft deformation modes are the dominant deformation mode in the crystals.  相似文献   

5.
An ordered CuAu alloy, which had relatively coarse grains (5 to 10 μm), without the lamellar structure, is mechanically tested at temperatures from 77 to 658 K. The temperature dependence of the yield stress is shown to be anomalous with a maximum nearT p≈573 K. The TEM analysis reveals the presence of single dislocations, superdislocations and microtwins. Long rectilinear dislocations at 523 K are identified as blocked screw superdislocations with the Burgers vector type <101]. Numerous curved single dislocations are seen, but blocked single dislocations are not detected. Various models are discussed to account for the specific deformation behavior of the ordered CuAu alloy.  相似文献   

6.
Isothermal compression tests are applied to study the deformation mechanisms of TC11 titanium alloy with lamellar structure under the deformation temperature range of 890-995 oC and strain rate range of 0.01-10 s-1.According to the flow stress data obtained by compression tests,the deformation activations are calculated based on kinetics analysis of high temperature deformation,which are then used for deformation mechanism analysis combined with microstructure investigation.The results show that deformation mechanisms vary with deformation conditions:at low strain rate range,the deformation mechanism is mainly dislocation slip;at low temperature and high strain rate range,twinning is the main mechanism;at high temperature and high strain rate range,the deformation is mainly controlled by diffusion of β phase.  相似文献   

7.
《Acta Materialia》2002,50(6):1307-1318
Creep experiments were conducted on five powder-metallurgy TiAl alloys with fine grains (65–80 μm), fine lamellar spacings (0.1–0.16 μm), and different compositions [Ti–47Al (+Cr, Nb, Ta, W, Si)] at temperatures of 760°C and 815°C and stresses from 35 to 723 MPa. Results show that at a given lamellar spacing, replacing 1% Nb (atomic percent) with 1% Ta and replacing 0.2% Ta with 0.2% W induced little effect, but addition of 0.3% Si decreased the creep resistance by a factor of 3–4 under otherwise identical conditions. Field emission TEM was used to characterize the changes of microstructure and alloy element distribution before and after creep. It was found that thinning and dissolution of α2 lamellae and continuous coarsening of γ lamellae were the main creep processes and the microalloying elements tended to segregate at lamellar interfaces, especially at ledges during creep. The effects of different alloying elements are interpreted in terms of the interaction of alloy segregants with misfit and/or misorientation dislocations at the lamellar interface. That is, the interaction retards the climb of interfacial dislocations and thus the creep process in the case of large segregants (Nb, Ta, W), but facilitates the climb and creep in the case of small segregants (Si).  相似文献   

8.
三周期极小曲面(triply periodic minimal surfaces, TPMS)多孔结构研究广泛,但变形TPMS多孔结构研究较少,而变形TPMS多孔结构在一定方向上的力学性能存在潜在优势。研究Gyroid单元多孔结构的参数化设计方法,采用激光选区熔化(selective laser melting, SLM)技术制备出孔隙率为60%和75%的常规和变形Gyroid单元多孔钛合金样件。通过Micro-CT观察样件的形貌特征,内部连通性良好,未发现有明显的结构断裂和孔隙堵塞。采用Instron电子万能材料试验机进行力学压缩试验,结果表明:孔隙率为60%的变形Gyroid单元多孔结构的抗压强度相比常规Gyroid单元多孔结构增加49.3%,弹性模量增加63.5%;孔隙率为75%时抗压强度增加40.5%,弹性模量增加70.5%。研究结果表明,在相同孔隙率的情况下,长轴在压缩方向上的变形Gyroid单元结构具有更优的力学性能。  相似文献   

9.
Samples of magnesium alloy AZ31 were deformed in plane strain compression in a channel die at 100 °C and a strain rate of 5 × 10−3 s−1. The initial texture was favorably oriented for extension twinning. At a true strain of ε = −0.11, many primary extension twins were observed to consume their parent grains completely. Furthermore, numerous secondary contraction twins formed within the primary extension twins and some tertiary extension twins grew within the secondary contraction twins. The orientations of the parent grains and all three generations of twins were measured. The twin variants selected during each of the three stages of twinning were determined by electron backscatter diffraction techniques and the absent potential twin variants were also identified. The way in which the selected primary extension twins grow so as to consume the parent grains and contact all the neighboring grains is explained in terms of the accommodation strains imposed on the neighboring grains. The analysis shows that the primary twin selected is not necessarily the variant with the highest Schmid factor but the one that requires the least accommodation work in most of the neighboring grains. The same principle was found to hold for the secondary and tertiary twins. By contrast, potential high Schmid factor twins that required the consumption of appreciable accommodation energy did not form. A Taylor simulation produced similar results and indicates that the accommodation strain concept is consistent with the principle of the minimization of plastic work.  相似文献   

10.
通过室温静态拉伸和扭转试验,结合TEM、SEM等分析检测方法,系统研究了片层Ti-55531合金在拉伸和扭转载荷下的断裂失效行为。结果表明,片层Ti-55531合金在拉伸和扭转载荷下的断裂失效有显著的不同:拉伸变形受滑移、次生α_s的孪生及剪切共同控制,扭转变形主要受滑移和剪切控制,未发现有孪晶;拉伸断口较扭转断口陡峭,失效以微孔聚集为主,含少量穿晶解理和沿晶开裂的混合断裂机制;扭转断裂失效则以微孔聚集和剪切开裂为主,含部分穿晶解理的混合断裂机制。无论在拉伸还是扭转载荷下,片层Ti-55531合金的断裂失效面均由最大剪切应力产生,剪切力比正应力更易使片层Ti-55531合金损伤破坏。  相似文献   

11.
The effect of severe plastic deformation (SPD) on the creep resistance of the Al-6%Cu-0.48Mn-0.52Mg-0.3Sc-0.1Zr alloy has been examined in a temperature range of 125–180°C. It has been shown that SPD performed by the method of equal-channel angular pressing at 300°C to a true strain of ~1 leads to the formation of a well-defined subgrain structure, which is retained upon solution treatment before quenching because of the presence in the alloy of ultradisperse Al3(Sc, Zr) particles with coherent boundaries. It was established that the creep strength at 125–150°C of the as-cast alloy and of the deformed material is approximately the same. At 180°C, the creep rate of the deformed aluminum alloy is almost an order of magnitude lower than that of the as-cast alloy. The reasons for the influence of the subgrain structure on the creep strength of the Al-Cu-Sc-Zr alloy are discussed.  相似文献   

12.
《Acta Materialia》2007,55(8):2747-2756
Dislocation densities and dislocation structure arrangements in cold compressed polycrystalline commercial M2052 (Mn–20Cu–5Ni–2Fe) high damping alloy with various strains were determined in scanning mode by X-ray peak profile analysis and electron backscatter diffraction (EBSD). The results indicate that the Mn–Cu–Ni–Fe alloy has an evolution behavior quite similar to the dislocation structure in copper. The dislocation arrangement parameter shows a local minimum in the transition range between stages III and IV that can be related to the transformation of the dislocation arrangement in the cell walls from a polarized dipole wall (PDW) into a polarized tile wall (PTW) structure. This evolution is further confirmed by the results of local misorientation determined by EBSD. In addition, during deformation, the multiplication of dislocation densities in the MnCu alloy is significantly slower than that in copper, and the transition of the dislocation structure is strongly retarded in the MnCu alloy compared with copper. These results can be explained by the mechanism of elastic anisotropy on the dislocation dynamics, as the elastic anisotropy in the MnCu alloy is larger than that in copper, which can strongly retard the multiplication of the dislocation population and the transformation of the dislocation structure. These results are important for research into the plastic working behavior of Mn–Cu–Ni–Fe high damping alloy.  相似文献   

13.
测试了两种温度固溶后锻态Ti-6.9Al-3.6Zr-2.7Sn-0.7Mo-0.6Nb-0.21Si(BT18y)钛合金棒的室温拉伸性能.利用金相显微镜、透射电镜和扫描电镜研究了该合金的室温拉伸塑性与显微组织的关系.结果表明:经920℃、2 h空冷处理的材料为细晶等轴组织,变形时晶粒间的协调性好,具有优良的室温拉伸性能,塑性尤其突出;经1 020℃、2 h空冷处理的材料为具有晶界α相的粗晶片层组织,在拉伸变形时,同时要求相邻晶粒之间、晶粒内部的相邻α片束团之间相互协调,增加了塑性变形的阻力,但残余β相使得材料保持了一定的塑性.多个视角观察表明:α片束团表现出了方向性,与拉伸轴夹角较小的片束具有良好的拉伸性能,与拉伸轴夹角较大的片束内的β相中间层是拉伸时裂纹的优先形成区.  相似文献   

14.
基于TiAl合金常规铸造定向层片组织与多孪晶合成晶体(polysynthetically twinned crystals,PST)的组织差别,详细讨论这些组织差别对常规铸造定向层片组织TiAl合金持久加载过程中组织退化的影响,并探讨降低这些不利影响的微合金化途径。结果表明:定向层片组织与PST晶体的差别主要包括存在层片团界和小角度取向差、Al元素成分偏析以及α_2相体积分数高于热力学平衡状态,同时,后续热等静压导致等轴γ晶粒析出和层片间距增加也是另外的明显差别。这些组织差别对定向层片组织持久加载过程中的组织退化造成不同程度的加剧作用。其中,Al元素成分偏析和α_2相体积分数过高促进了定向层片组织铸态试样的组织退化,热等静压试样中析出的等轴γ晶粒进一步加剧了其组织退化,这些均对定向层片组织持久寿命造成不利影响。而层片团界对组织退化的影响程度较小。此外,探讨了采用Zr、C、Si微合金化抑制持久加载过程中组织退化进而改善持久性能的可行性。  相似文献   

15.
利用THERMECMASTOR-Z型热模拟试验机对粗片层状组织TA15合金进行了变形温度为750~1100℃、应变速率为0.001~10S。的热压缩试验。研究了变形温度、应变速率、应变对流动应力的影响,并采用逐步回归法合理地选取了影响流动应力的“最优”自变量子集,建立了合金的本构关系模型。结果表明,所建立的本构关系模型能够用来表征该合金热变形过程的力学行为;误差分析表明,该逐步回归法本构关系模型具有较高的精度,可用于指导粗片层状组织TA15合金热加工工艺制定,并可用于粗片层状组织TA15合金热变形过程的有限元模拟。  相似文献   

16.
17.
In this work,the Sn-58Bi(weight percent) eutectic alloy was directionally solidified at a constant temperature gradient(G = 12 K.mm-1) with different growth rates using a Bridgman type directional solidification furnace.A lamellar microstructure was observed in the Sn-58Bi samples.The lamellar spacing and micro-hardness of longitudinal and transversal sections were measured.The values of lamellar spacing of both longitudinal and transversal sections decrease with an increase in growth rate.The microhardness increases with an increase in the growth rate and decreases with an increase in the lamellar spacing.The dependence of lamellar spacing on growth rate,and micro-hardness on both growth rate and lamellar spacing were obtained by linear regression analysis.The relationships between the lamellar spacing and growth rate,microhardness and growth rate,and micro-hardness and lamellar spacing for transversal and longitudinal sections of Sn-58Bi eutectic alloy were given.The fitted exponent values obtained in this work were compared with the previous similar experimental results and a good agreement was obtained.  相似文献   

18.
利用金相显微镜、扫描和透射电镜等仪器表征了TiAl合金的片层组织及结构特征,研究了Ti-48Al at%合金片层组织的形成机制和片层组织细化工艺及其机理。结果表明,Ti-48Al合金单级热处理能够得到全片层组织,平均晶粒尺寸约150μm,片层间距约1.30μm。其形成过程是:γ相在α相晶内(0001)面上通过全位错分解成核,通过不全位错滑移、层错区扩展而长大。循环热处理和双温热处理均能将片层晶粒尺寸细化到30μm,片层间距0.90μm,前者的细化机理为相变重结晶细化了α相晶粒,后者细化片层组织的关键在于低温段(α2+γ)两相区热处理形成细小的双态组织。  相似文献   

19.
1 INTRODUCTIONAmongzinc aluminumcastalloy ,ZA2 7alloyex hibitsattractive physicalandmechanicalpropertiescombinedwithgoodfrictionandwearresistanceprop ertiesmakingitabearingalloyreplacingsomecopperalloys[1,2 ] .However ,somepropertiesofthisalloywhichmustbetakenintoaccountarecomparativelylowresistancetocreepdeformation ,poorstrengthanditsdimensionalinstabilityatmoderatelyelevatedtemperatures[35] .Thedimensionalchangesofas castZA2 7alloyonageingwerestudiedbysomework ers[1,3,6 ] ,butthesere…  相似文献   

20.
通过全片层γ-TiAl基合金SEM原位拉伸实验以及对裂纹前方滑移面及解理面上的应用力进行有限元计算,研究了片层界面在形核中的作用,当原裂纹与片层平行时,裂纹尖端滑移秕的分切应力较小,滑移相对困难,片层面上的正应力比其它解理面上的正应力大,从而解理裂纹优先沿片层界面形核;当裂纹与片层界面垂直时,裂纹尖端很多滑移系上的分切应力较大,滑移相对容易,片层面上的正应力远比其它解理面上的正应力小,从而裂纹优等  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号