首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal conductivity and the viscosity data of CFC alternative refrigerant HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane: CHCI2-CF3) were critically evaluated and correlated on the basis of a comprehensive literature survey. Using the residual transport-property concept, we have developed the three-dimensional surfaces of the thermal conductivity-temperature-density and the viscosity-temperature-density. A dilute-gas function and an excess function of simple form were established for each property. The critical enhancement contribution was taken no account because reliable crossover equations of state and the thermal conductivity data are still missing in the critical region. The correlation for the thermal conductivity is valid at temperatures from 253 to 373 K, pressures up to 30 MPa, and densities up to 1633 kg m–3. The correlation for the viscosity is valid at temperatures from 253 to 423 K, pressures up to 20 MPa. and densities up to 1608 kg·m–3. The uncertainties of the present correlations are estimated to be 50% for both properties, since the experimental data are still scarce and somewhat contradictory in the vapor phase at present.  相似文献   

2.
Molar heat capacities at a constant volume (C v) of 2,2-dichloro-1,1,1-trifluoroethane (R123) and 1-chloro-1,2,2,2-tetrafluoroethane (R124) were measured with an adiabatic calorimeter. Temperatures ranged from 167 K for R123 and from 94 K for R124 to 341 K, and pressures were up to 33 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C (2) v), saturated liquid (C or C x ), and single-phase (C v) molar heat capacities. The C data were used to estimate vapor pressures for values less than 100 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. Due to the tendency of both R123 and R124 to subcool, the triple-point temperature (T tr) and the enthalpy of fusion ( fus H) could not be measured. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded uncertainty (at the 2 level) for C v is estimated to be 0.7%, for C (2) v it is 0.5%, and for C it is 0.7%.  相似文献   

3.
We measured the vapor pressure of chlorodifluoromethane (commonly known as R22) at temperatures between 217.1 and 248.5 K and of 1,1,1,2-tetrafluoroethane (commonly known as R134a) in the temperature range 214.4 to 264.7 K using a comparative ebulliometer. For 1,1,1,2-tetrafluoroethane at pressures between 220.8 and 1017.7kPa (corresponding to temperatures in the range 265.6 to 313.2K), additional measurements were made with a Burnett apparatus. We have combined our results for 1,1,1,2-tetrafluoroethane with those already published from this laboratory at higher pressures to obtain a smoothing equation for the vapor pressure from 215 K to the critical temperature. For chlorodifluoromethane our results have been combined with certain published results to provide an equation for the vapor pressure at temperatures from 217 K to the critical temperature.  相似文献   

4.
An automated bellows volumometer is described which is capable of obtaining p-V-T data in the form of volume ratios for pressures up to 380 MPa. Volume ratios for 1,1-dichloro-2,2,2-trifluoroethane (R123) have been measured for six temperatures in the range of 278.15 to 338.15 K in the liquid phase. The accuracy of the volume ratios is estimated to be ±0.05 to 0.1% for the experimental temperatures up to 298.15 K and better than ±0.15% for temperatures above the normal boiling point of R123 (300.15 K). They agree with the literature data (which do not extend beyond 4 MPa) within the experimental uncertainty of those results. Isothermal compressibilities, isobaric expansivities, internal pressures, and isobaric molar heat capacities have been evaluated from the volumetric data. The pressure dependence of isobaric molar heat capacities obtained from the data generally agree with the pressure dependence of experimentally measured literature values within the latter's accuracy of ±0.4%.  相似文献   

5.
An updated survey of the existing thermal conductivity data for HCFC123 is presented. In addition, new wide-ranging thermal conductivity measurements, which have been carried out at NIST, are summarized. These results supplement the existing database and are used for an improved correlation of the thermal conductivity of HCFC123. The correlation covers the temperature range from 180 to 480 K with pressures up to 67 MPa or densities up to 1900 kg m−3. The correlation includes an empirical critical enhancement term of a form suitable for industrial use and represents the NIST dataset within ±2.22% at the 95% confidence level.  相似文献   

6.
A multilayer feedforward neural network (MLFN) technique is adopted for developing a viscosity equation =(T, ) for R123. The results obtained are very promising, with an average absolute deviation (AAD) of 1.02% for the currently available 169 primary data points, and are a significant improvement over those of a corresponding conventional equation in the literature. The method requires a high-accuracy equation of state for the fluid to be known to convert the experimental P, T into the independent variables , T, but such equation may not be available for the target fluid. With a view to overcoming this difficulty, a viscosity implicit equation of state in the form of T=T(P, ), avoiding the density variable, is obtained using the MLFN technique, starting from the same data sets as before. The prediction accuracy achieved is comparable with that of the former equation, =(T, ).  相似文献   

7.
Thermodynamic properties of 1,1,1-trifluoroethane (R143a) are expresed in terms of a 32-term modified Benedict-Webb-Rubin (MBWR) equation of state. Coefficients are reported for the MBWR equation and for ancillary equations used to lit the ideal-gas heat capacity, and the coexisting densities and pressure along the saturation boundary. The MBWR coefficients were determined from a multiproperty fit that used the following types of experimental data:PVT: isochoric, isobaric, and saturated-liquid heat capacities: second virial coefficients: speed of sound and properties at coexistence. The equation of state was optimized to the experimental data from 162 to 346 K and pressures to 35 MPa with the exception of the critical region. Upon extrapolation to 500 K and 60 MPa, the equation gives thermodynamically reasonable results. Comparisons between calculated and experimental values are presented.  相似文献   

8.
In this Note we present the density of HCFC 141b, measured between 293.15 and 300.15 K, with an mechanical oscillator densimeter, with an uncertainty of 0.007%. The results are compared with the densities estimated by the reduced hard-sphere-DeSantis equation of state and with the experimental data obtained by several authors.  相似文献   

9.
We describe the design and operation of a new high-pressure metal ebulliometer which can operate at pressures to at least 3 MPa in the range 220–400 K. Infinite-dilution activity coefficients are presented for the system CHF2Cl + CF3-CH, at 275 K and for the system CF3-CH2F + CH2F2, at 260, 230, and 300 K. The Wilson activity coellicient model and a virial coefficient model are applied to these systems, and the phase equilibrium conditions are calculated. The results are shown to agree well with predicted and with published measured values. The excess enthalpy is calculated and compared with results from a Peng Robinson equation of state. Vapor densities on the dew curves are given.  相似文献   

10.
Molar heat capacities at constant volume (C v) of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) have been measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase ((C v (2) ), saturated-liquid (C or C x ' ), and single-phase (C v) molar heat capacities. The C data were used to estimate vapor pressures for values less than 105 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature and the enthalpy of fusion were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded relative uncertainty (with a coverage factor k=2 and thus a two-standard deviation estimate) for C v is estimated to be 0.7%, for C v (2) it is 0.5%, and for C it is 0.7%.  相似文献   

11.
This paper reports new, absolute measurements of the thermal conductivity of the liquid refrigerants R22, R123, and R134a in the temperature range 250–340 K at pressures from saturation up to 30 MPa. The measurements, performed in a transient hot-wire instrument employing two anodized tantalum wires as the heat source, have an estimated uncertainty of ±0.5%. A recently developed semiempirical scheme is employed to correlate successfully the thermal conductivity and the viscosity of these refrigerants, as a function of their density.  相似文献   

12.
We present new data for the vapor pressure andPVT surface of 1-chloro-1,2,2,2-lelralluoroethane (designated R124 by the refrigeration industry) in the temperature range 278–423 K. ThePVT data are for the gas phase at densities up to 1.5 times the critical density. Correlating equations are given for the vapor pressures from 220 K to the critical temperature, 395.43 K, and for thePVT surface at densities up to 2 mol · L–1 (approximately 0.5 times the critical density). Second and third virial coefficients have been derived from thePVT measurements.  相似文献   

13.
Thermal-conductivity measurements are reported for the new refrigerants R134a, R152a und R123. Transient hot-wire experiments were performed which cover both the liquid and vapor states at temperatures and pressures ranging from?=?20°C to 90°C and fromp=0.1 bar to 60 bar respectively. The results are correlated with density and temperature. In addition temperature dependent correlations are presented for (i) saturated liquid, (ii) saturated vapor, (iii) ideal gas (which equals approximately vapor state at ambient pressure). Finally the results are compared with data from the literature and also with the thermal conductivities of R12 and R11.  相似文献   

14.
The effect of pressure on the volume of R141, R131, and R132b is reported as volume ratios (the volume under pressure relative to its value at atmospheric pressure) at six temperatures covering the range 278.15 to 338.13 K and pressures up to 380 MPa for R141 and R131a. For R132b the same temperature range has been used, but above its normal boiling point experimental arrangements have limited maximum pressures to below 300 MPa, with some loss of accuracy. Densities have been measured at atmospheric pressure for each liquid. The experimental data have been used to calculate isothermal compressibilities, thermal expansivities, and internal pressures: the change in isobaric heat capacity from its value at atmospheric pressure has also been estimated. The volume ratios for all three compounds can be represented by a version of the Tait equation based on previously reported data for 1,2-dicloroethane and 1,1,2-trichloroethane with the inclusion of allowances for the substitution in the former of chlorine or fluorine for the hydrogens on one of the carbons.  相似文献   

15.
Using a transient coaxial cylinder technique, thermal conductivities were measured for liquid 1,1,1-trifluoro-2,2-dichloroethane (refrigerant R123), 1,1,1,2-tetrafluoroethane (refrigerant R134a). and pentalluoroethane (refrigerant R 125). The uncertainty of the experimental data is estimated to be within 2–3 %. Thermal conductivities of refrigerants were measured at temperatures ranging from –114 to 20°C under pressures up to IOMPa. The apparatus was calibrated with four kinds of liquids and gases. The features of the density dependence of thermal conductivity are indicated. Existing equations for calculating the coefficient are analyzed in cases where development has been sufficient to enable comparisons to be made with experiment. Saturated-liquid thermal conductivities for R134a and R123 are compared with corresponding experimental values.  相似文献   

16.
Vapor pressures were evaluated from measured internal-energy changes U (2) in the vapor+liquid two-phase region. The method employed a thermodynamic relationship between the derivative quantity (U (2)/V) T , the vapor pressure p , and its temperature derivative (p/T). This method was applied at temperatures between the triple point and the normal boiling point of three substances: fluoromethane (R41), 1,1-difluoroethane (R152a), and 1,1,1-trifluoroethane (R143a). In the case of R41, vapor pressures up to 1 MPa were calculated to validate the technique at higher pressures. For R152a, the calculated vapor pressure at the triple-point temperature differed from a direct experimental measurement by less than the claimed uncertainty (5 Pa) of the measurement. The calculated vapor pressures for R41 helped to resolve discrepancies in several published vapor pressure sources. Agreement with experimentally measured vapor pressures for R152a and for R143a near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately 0.04 kPa (0.04%) for the published measurements.  相似文献   

17.
The critical temperature and pressure, vapor pressure, and PVT relations for gaseous and liquid 1-chloro-1,2,2,2-tetrafluoroethane (R124) were determined experimentally. The vapor pressure was measured in the temperature range from 278.15 K to the critical temperature. The PVT measurements were carried out using two types of volumeters in the temperature range from 278.15 to 423.15 K, at pressure up to 100 MPa. The numerical PVT data of gaseous state are fitted as a function of density to a modified Benedict-Webb-Rubin equation. The pressure-volume relations of the liquid at each temperature are correlated satisfactorily as a function of pressure by the Tait equation. The critical density and saturated vapor and liquid densities are also determined and some of the thermodynamic properties are derived from the experimental results.  相似文献   

18.
The thermal conductivities of ternary refrigerant mixtures of difluoromethane (R32), pentafluoroethane (R125), and 1,1,1,2-tetrafluoroethane (R134a) in the liquid phase have been measured by the transient hot-wire method with one bare platinum wire. The experiments were performed in the temperature range of 233 to 323 K and in the pressure range of 2 to 20 MPa at various compositions. The measured data are correlated as a function of temperature, pressure, and composition. From the correlation, we can calculate the thermal conductivity of pure refrigerants and their binary or ternary refrigerant mixtures. The uncertainty of the measurements is estimated to be ±2%.  相似文献   

19.
Various thermophysical properties of refrigerant R143a (1,1,1-trifluoroethane) have been determined under saturation conditions using dynamic light scattering (DLS). Light scattering from bulk fluids was applied for measuring the thermal diffusivity and the sound velocity for both the saturated liquid and vapor phase over a wide temperature range of 273-346 K. The results were also used to obtain information on the specific heat at constant pressure and the isentropic compressibility. Furthermore, the surface tension and liquid kinematic viscosity were determined simultaneously in the temperature range 253-333 K from light scattering by surface waves on a horizontal liquid-vapor interface. All experiments are based on a heterodyne detection scheme and a signal analysis by photon correlation spectroscopy (PCS). The results for R143a are discussed in detail and compared to literature data available.  相似文献   

20.
The thermal conductivities of refrigerant mixtures of difluoromethane (R32) and pentafluoroethane (R125) in the liquid phase are presented. The thermal conductivities were measured with the transient hot-wire method with one bare platinum wire. The experiments were conducted in the temperature range of 233–323 K and in the pressure range of 2–20 MPa. An empirical equation to describe the thermal conductivity of a near-azeotropic mixture, R32+R125, is provided based on the measured 168 thermal conductivity data as a function of temperature and pressure. The dependence of thermal conductivity on the composition at different temperatures and pressures is also presented. The uncertainty of our measurements is estimated to be ±2%. Paper dedicated to Professor Edward A. Mason.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号