首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of Ag2S are prepared on glass and quartz substrates by a thermal evaporation method. The structural studies show that the films are well crystallized with an acanthite structure. The optical properties of the films are investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 500-2200 nm. The refractive index, n, and the absorption index, k, of Ag2S are determined from the absolute values of the measured transmittance and reflectance. The dispersion of refractive index in Ag2S is analyzed using the concept of the single oscillator. Within this concept the oscillator energy, E0, and the dispersion energy, Ed, can be determined as 5 and 32.5 eV, respectively. It is interesting to note that Ag2S appears to fall into the ionic class. The values of the lattice dielectric constant and the ratio of the carrier concentration to the effective mass are also determined as 7.77 and 1.7×1047 kg−1 m−3, respectively. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals an indirect allowed transition with a band gap of 0.96 eV and associated phonons of 0.05 eV. Measurements of the dark electrical resistivity is studied as a function of film thickness and temperature. The dark electrical resistivity decreases with increasing film thickness. Graphical representation of log ρ as a function of reciprocal temperature yields two distinct linear parts indicating the existence of two activation energies ΔE1 and ΔE2 as 0.18 and 0.28 eV respectively. Discussion on the obtained results and their comparison with the previous published data is also given.  相似文献   

2.
Chalcopyrite copper indium aluminum diselenide (CuIn0.81Al0.19Se2) compound is prepared by direct reaction of high purity elemental copper, indium, aluminum and selenium in their stoichiometric proportion. Structural and compositional characterizations of pulverized material confirm the formation of a single phase, polycrystalline nature. CuInAlSe2 (CIAS) thin films are deposited on organically cleaned soda lime glass substrates using flash evaporation technique by varying the substrate temperatures in the range from 423 K to 573 K. Influence of substrate temperature observed by X-ray diffraction (XRD), scanning electron microscope (SEM), optical and electrical measurement. CIAS Films grown at different substrate temperatures are polycrystalline in nature, exhibiting a chalcopyrite structure with lattice parameters a = ∼0.576 nm and c = ∼1.151 nm. The crystallinity in the films increases with increasing substrate temperature up to 473 K, and tend to degrade at higher substrate temperatures. Optical band gap is in the range of 1.20 eV–1.38 eV and the absorption coefficient is close to 105 cm−1. Electrical characterization reveals p-type conductivity and the structural, morphological and optical properties indicate potential use of CIAS thin films as an absorber layer for thin film solar cell applications.  相似文献   

3.
Cd1-xZnxSe (x = 0, 0.5 and 1) thin films have been deposited onto glass substrates using thermal evaporation technique. The lattice constants, grain size, microstrain and dislocation density were studied by using X-ray diffraction. In addition the optical constants were calculated in the wavelength range 400-2500 nm. Transmittance and reflectance were used to calculate the absorption coefficient α and the optical band gap Eg. The linear relation of (αhυ)2 as a function of photon energy hυ for the thin films illustrated that the films exhibit a direct band gap, which increases with increasing Zn content. This increasing of optical band gap was interpreted in accordance to the increasing in the cohesive energy. Optical constants, such as refractive index n, optical conductivity σopt, complex dielectric constant, relaxation time τ and dissipation factor tanδ were determined. The optical dispersion parameters E0, Ed were determined according to Wemple and Di Domenico method.  相似文献   

4.
Polycrystalline and amorphous thin films of AgGaS2 were grown by flash evaporation for the first time. From a detailed investigation of the growthconditions it was possible to derive the first so-called structural phase diagram of a ternary chalcopyrite compound. In addition, the crystallization behaviour of amorphous films in a second heat treatment step was studied extensively. The crystal structures and chemical composition were analysed by X-ray diffraction, thermogravimetry and atomic absorption spectroscopy. The films were characterized by electrical and photo-electrical measurements.  相似文献   

5.
Scandium oxide (Sc2O3) films were deposited by electron beam evaporation with substrate temperatures varying from 50 to 350 °C. X-ray diffraction, scanning electron microscopy, spectrometer, and optical profilograph were employed to investigate the structural and optical properties of the films. The refractive index and extinction coefficient were calculated from the transmittance and reflectance spectra, and then the energy band gaps were deduced and discussed. Laser induced damage threshold of the films were also characterized. Optical and structural properties of Sc2O3 films were found to be sensitive to substrate temperature.  相似文献   

6.
AgInS2 thin films were prepared by the spray pyrolysis technique using a water/ethanol solution containing silver acetate, indium chloride and thiourea. We reported our results on the characterization of tetragonal AgInS2 (chalcopyrite type) films, which were grown from indium deficient spraying solution. The films displayed a n-type conductivity with room temperature resistivities in the range between 103 and 104 Ω cm. The absorption spectra of sprayed films revealed two direct band-gaps with characteristic energies around 1.87 and 2.01 eV, which are in good agreement with the reported energy values for interband transitions from the split p-like valence band to the s-like conduction band in tetragonal AgInS2 single crystals.  相似文献   

7.
SnS and SnS2 thin films have been prepared by the dip technique. In this technique, a substrate was dipped into an alcoholic solution of the corresponding chloride and thiourea and then withdrawn vertically at a controlled speed, and finally baked in a high temperature furnace at atmospheric condition. XRD and SEM data suggest that good quality SnS and SnS2 films are obtained at a baking temperature of 300 and 360°C, respectively. Values of band gap for SnS and SnS2 obtained from spectral response of photoconductivity are 1.4 and 2.4 eV, respectively. The indirect allowed band gap values for SnS2 film obtained from optical absorption measurements are 1.95 and 2.05 eV. Open-air annealing of both SnS and SnS2 films at 400°C converts them to transparent conducting SnO2.  相似文献   

8.
In2O3 thin films were prepared by the thermal oxidation of amorphous InSe films in air atmosphere. The structure, morphology and composition of the thermal annealed products were characterized by X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive spectroscopy, respectively. The XRD patterns indicate that the as-deposited InSe films were amorphous and they fully transformed into polycrystalline In2O3 films with a cubic crystal structure in the preferential (222) orientation at a temperature around 600 °C. The optical energy gap of 3.66 eV was determined at room temperature by transmittance and reflectance measurements using UV-vis-NIR spectroscopy. A preliminary characterization shows that these films have a promising response towards NO2 gas at a working temperature around 180 °C.  相似文献   

9.
Electrical properties and optical band gap of amorphous Se65Ga30In5 thin films, which were thermally evaporated onto chemically cleaned glass substrates, have been studied before and after thermal annealing at temperatures above the glass transition temperature and below the crystallization temperature. The I-V characteristics, which were recorded in the temperature range (200-300 K), were obtained at different voltages and exhibit an ohmic and non-ohmic behavior at low (0-5 V) and high (5-18 V) voltages, respectively, for annealed and as-prepared films. Analysis of the experimental data in the high voltage range confirms the presence of space charge limited conduction (SCLC) for annealed and as-prepared films. The dependence of DC conductivity on temperature in the low voltage region shows two types of conduction channels: The first is in the range 270-300 K and the other at the lower temperature range (200-270 K). The conduction in the first region is due to thermally activated process, while in the other is due variable range hopping (VRH) of charge carriers in the band tails of the localized states. After annealing, the conductivity has been found to increase but the activation energy decreases. This is attributed to rupturing of Se-In weak bonds and formation of Se-Ga strong bonds. This process changes the concentration of defects in the films which in turn decreases the density of states N(EF) as predicted by Mott's VRH model. Analysis of the absorption coefficient of annealed and as-prepared films, in the wavelength range 300-700 nm, reveals the presence of parabolic densities of states at the edges of both valence and conduction bands in the studied films. The optical band gap (Eg) was obtained through the use of Tauc's relation and is found to decrease with annealing temperature.  相似文献   

10.
Stoichiometric compound of copper indium diselenide (CuInSe2) was synthesized by direct reaction of high-purity elemental copper, indium and selenium in an evacuated quartz ampoule. The phase structure and composition of the synthesized pulverized material analyzed by X-ray diffraction (XRD) and energy dispersive analysis of X-rays (EDAX) revealed the chalcopyrite structure and stoichiometry of elements. Thin films of CuInSe2 were deposited onto organically cleaned soda lime glass substrates held at different temperatures (i.e. 300 K to 573 K) using thermal evaporation technique. CuInSe2 thin films were then thermally annealed in a vacuum chamber at 573 K at a base pressure of 10− 2 mbar for 1 h. The effect of substrate temperature (Ts) and thermal annealing (Ta) on structural, compositional, morphological, optical and electrical properties of films were investigated using XRD, transmission electron microscopy, EDAX, atomic force microscopy (AFM), optical transmission measurements and Hall effect techniques. XRD and EDAX studies of CuInSe2 thin films revealed that the films deposited in the substrate temperature range of 423-573 K have preferred orientation of grains along the (112) plane and near stoichiometric composition. AFM analysis indicates that the grain size increases with increase of Ts and Ta. Optical and electrical characterizations of films suggest that CuInSe2 thin films have high absorption coefficient (104 cm− 1) and resistivity value in the interval 10− 2-101 Ω cm influenced by Ts and Ta.  相似文献   

11.
In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO2/Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu → Cu + Cu2O → Cu2O → Cu2O + CuO → CuO was detected. Pure Cu2O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300-550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current-voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases.  相似文献   

12.
Nanocrystalline bismuth sulfide thin films were deposited on glass substrate by thermal evaporation technique using the solvothermally synthesized nanometer-sized bismuth sulfide powder as the source material. X-ray diffraction (XRD) analysis revealed that the films are polycrystalline in nature with orthorhombic structure. The crystallinity of the thin films improved with substrate temperature, and the estimated crystallite size are in the nanometer regime. Scanning electron microscope (SEM) analysis showed homogenous distribution of grains with well defined grain boundaries. The optical transmittance of the nanocrystalline bismuth sulfide thin films increases with the increase in substrate temperature, and the optical transition was found to be direct and allowed. The estimated optical band gap energy was found to decrease with the increase in substrate temperature. The electrical resistivity of the bismuth sulfide thin films is of the order of 10−4 Ω-cm and exhibits semiconductor nature. Experimental results demonstrate that the structural, optical and electrical properties of bismuth sulfide thin films have strong dependence on the substrate temperature.  相似文献   

13.
Thin films of Cu2Te were deposited, at room temperature, on glass substrates by magnetron sputtering from independent Cu and Te sources. This work presents the effect of annealing temperature on the optical, structural, and electrical properties of sputtered Cu2Te films. Annealing above 300 °C resulted in stoichiometric and near stoichiometric Cu2Te phases, whereas temperatures above 400 °C yielded films with single Cu2Te phase. In contrast, annealing at temperatures of 250 °C and below resulted in mixed phases of CuTe, Cu7Te5, Cu1.8Te, and Cu2Te. Analyses of transmittance and reflectance measurements for Cu2Te indicate that photon absorption occurs via indirect band transitions for incident photons with energy above the band gap energy and free carrier absorption below the band gap energy. The determined indirect band gap was 0.90 eV and its associated phonon energy was 0.065 eV. Optical phonon scattering was identified as the mechanism through which the momentum is conserved during absorption by free carriers. Electrical measurements show p-type conductivity and highly degenerate semiconducting behavior with a hole carrier concentration p = 5.18 × 1021 cm− 3.  相似文献   

14.
This paper describes the structural properties and electrical characteristics of thin Ho2O3 gate dielectrics deposited on silicon substrates by means of reactive sputtering. The structural and morphological features of these films after postdeposition annealing were studied by X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. It is found that Ho2O3 dielectrics annealed at 700 °C exhibit a thinner capacitance equivalent thickness and excellent electrical properties, including the interface trap density and the hysteresis in the capacitance-voltage curves. Under constant current stress, the Weibull slope of the charge-to-breakdown of the 700 °C-annealed films is about 1.7. These results are attributed to the formation of well-crystallized Ho2O3 structure and the reduction of the interfacial SiO2 layer.  相似文献   

15.
Niobium-doped tin oxide thin films were deposited on glass substrates by the chemical spray pyrolysis method at a substrate temperature of 400 °C. Effects of Nb doping on the structural, electrical and optical properties have been investigated as a function of niobium concentration (0–2 at.%) in the spray solution. X-ray diffraction patterns showed that the films are polycrystalline in nature and the preferred growth direction of the undoped film shifts to (200) for Nb-doped films. Atomic force microscopy study shows that the surface morphology of these films vary when doping concentration varies. The negative sign of Hall coefficient confirmed the n-type conductivity. Resistivity of ~4.3 × 10−3 Ω cm, carrier concentration of ~5 × 1019 cm−3, mobility of ~25 cmV−1 s−1 and an average optical transmittance of ~70% in the visible region (500–800 nm) were obtained for the film doped with 0.5 at.% niobium.  相似文献   

16.
A.A Ibrahim 《Vacuum》2004,75(3):189-194
Zinc telluride thin films of various thicknesses are deposited by vacuum evaporation onto glass substrates at room temperature. The X-ray diffraction technique is used to determine the crystalline structure and grain size of the films, respectively. The structure was found to be cubic with preferential orientation along a (1 1 1) plane and crystallite size of about 50-80 nm. The degree of preferred orientation and crystallite size are increased as the film thickness increases. The current density-voltage (J-V) characteristics showed ohmic conduction in the lower voltage range and space-charge-limited conductivity in the higher voltage range. Capacitance measurements indicated that the films have a relative permittivity, εr, of approximately 8.19. Further evidence for this conduction process was provided by linear dependence of Vt on d2. Analysis of the results yielded hole concentration , which is correlated with the structural properties.  相似文献   

17.
Er3+-doped Y2Ti2O7 and Er2Ti2O7 thin films were fabricated by sol-gel spin-coating method. A well-defined pyrochlore phase ErxY2-xTi2O7 was observed while the annealing temperature exceeded 800 °C. The average transmittance of the ErxY2-xTi2O7 thin films annealed at 400 to 900 °C reduces from ∼ 87 to ∼ 77%. The refractive indices and optical band gaps of ErxY2-xTi2O7 (x = 0-2) annealed at 800 °C/1 h vary from 2.20 to 2.09 and 4.11 to 4.07 eV, respectively. The ∼ 1.53 μm photoluminescence spectrum of Er3+ (5 mol%)-doped Y2Ti2O7 thin films annealed at 700 °C/1 h exhibits the maximum intensity and full-width at half maximum (∼ 60 nm).  相似文献   

18.
Pulsed laser deposited nanocrystalline V2O5 thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and optical spectroscopy. The films were deposited on amorphous glass substrates, keeping the O2 partial pressure at 13.33 Pa and the substrate temperature at 220 °C. The characteristics of the films were changed by varying the laser fluence and repetition rate. XRD revealed that films are nanocrystalline with an orthorhombic structure. XPS shows the sub-stoichiometry of the films, that generally relies on the fact that during the formation process of V2O5 films, lower valence oxides are also created. From the HRTEM images, we observed the size evolution and distribution characteristics of the clusters in the function of the laser fluence. From the spectral transmittance we determined the absorption edge using the Tauc plot. Calculation of the Bohr radius for V2O5 is also reported.  相似文献   

19.
The stability of flash-evaporated amorphous Ge2Sb2Te5 thin films has been studied under medium-term temperature treatment (30 - 80 °C, with a step of 10 °C) in ten subsequent heating and cooling cycles. The significant changes in structure and optical properties are reported. The temperature cycling of the films resulted in formation of an isolated 5 - 7 nm nano-crystalline phase in the amorphous phase. The corresponding increase in refractive index and change in optical bandgap energy and sheet resistance are also presented. The formation of Ge2Sb2Te5 nano-crystals (~ 5 - 7 nm) even under temperature below 80 °C could contribute to the explanation of mechanism of resistivity fluctuation (drift) of the “amorphous phase” films. We also show that the optical and electrical properties of flash evaporated Ge2Sb2Te5 thin films are very similar to those reported for sputtered films.  相似文献   

20.
CdTe thin films were deposited on KCl and glass substrates using thermal evaporation technique under high vacuum conditions. CdTe bulk compound grown by vertical directional solidification (VDS) technique was used as the source material to deposit thin films. Powder X-ray diffraction technique was employed to identify the phase of the as grown bulk CdTe compound as well as its thin films. Surface morphology and the stoichiometry of the bulk compound and thin films was carried out by using scanning electron microscope (SEM) with an attachment of energy dispersive spectrometer(EDS). Microstructural features associated with the as deposited CdTe thin films were studied by using transmission electron microscope (TEM). The films deposited on to glass substrates at different temperatures have been used to study the I-V characteristics of the films. These parameters have been studied in detail in order to prepare good quality nanostructured thin films of CdTe compound. CdTe bulk compound grown by VDS method and its thin films prepared by thermal evaporation method found to have single phase with cubic structure. Size of the particles in the as deposited films vary between 5 and 40 nm In the present study efforts have been made to correlate the electrical and optical properties of the CdTe thin films with the corresponding microstructural features associated with them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号