首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scent and coloration of corolla were examined as floral attributes responsible for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flower, Brassica rapa. Floral volatile components that release the flower-visiting behavior of the butterfly were identified by chemical analyses, electroantennography (EAG), and two behavioral bioassays: proboscis extension reflex (PER) in response to odor and attraction to artificial flowers. GC and GC-MS analyses of the headspace volatiles from the flowers revealed the presence of six aromatic compounds, benzaldehyde, phenylacetaldehyde, benzyl alcohol, 2-phenylethanol, phenylacetonitrile, and indole in decreasing order of quantity. Of these, phenylacetaldehyde elicited the highest response in the PER assay. While benzyl alcohol, 2-phenylethanol, benzaldehyde, and phenylacetonitrile evoked moderate responses, the PER-eliciting activity of indole was very weak. In two-choice behavioral bioassays, artificial flowers scented with any one of these PER-active compounds attracted significantly more butterflies than control (unscented) flowers, whereas those treated with indole were almost inactive. The EAG activities of the six chemicals were not high and were about the same at a low dose (1 g), but phenylacetaldehyde elicited a much stronger response from both sexes at higher doses (10 and 100 g). An overall profile of EAG responses at a dose of 100 g was analogous to that of PER performance, suggesting that floral volatiles may be involved in close-range location or recognition of flowers rather than long-range attraction. By spectroscopic and UV-photographic examinations of rape flower, the central part of the corolla was found to absorb UV rays in marked contrast to the other parts, which reflected near-UV rays (max = 350 nm). This indicates that the flower is endowed with a conspicuous nectar guide that is probably an important visual stimulus for attracting foraging adults of P. rapae. Consequently, the present findings strongly suggest that this elaborate pollination strategy of rape flower, characterized by its good combination of olfactory and visual attractiveness, accounts for preferential visiting by the cabbage butterfly to the flower.  相似文献   

2.
In the Silene latifoliaHadena bicruris nursery pollination system, the Hadena moth is both pollinator and seed predator of its host plant. Floral scent, which differs among S. latifolia individuals and populations, is important for adult Hadena to locate its host. However, the success of moth larvae is strongly reduced if hosts are infected by the anther smut fungus Microbotryum violaceum, a pathogen that is transmitted by flower visitors. There were no qualitative differences between the scent of flowers from healthy and diseased plants. In addition, electroantennographic measurements showed that Hadena responded to the same subset of 19 compounds in samples collected from healthy and diseased plants. However, there were significant quantitative differences in scent profiles. Flowers from diseased plants emitted both a lower absolute amount of floral scent and had a different scent pattern, mainly due to their lower absolute amount of lilac aldehyde, whereas their amount of (E)-β-ocimene was similar to that in healthy flowers. Dual choice behavioral wind tunnel tests using differently scented flowers confirmed that moths respond to both qualitative and quantitative aspects of floral scent, suggesting that they could use differences in floral scent between healthy and infected plants to discriminate against diseased plants. Population mean fruit predation rates significantly increased with population mean levels of the emission rates of lilac aldehyde per flower, indicating that selection on floral scent compounds may not only be driven by effects on pollinator attraction but also by effects on fruit predation. However, variation in mean emission rates of scent compounds per flower generally could not explain the higher fruit predation in populations originating from the introduced North American range compared to populations native to Europe.  相似文献   

3.
The attractiveness of volatile compounds from the floral scent of Rosa, one of the most preferred plants for adult Hoplia communis, was evaluated under field conditions. The beetles were attracted to most compounds tested, but 2-phenylethanol exhibited the highest capture rate. Catches increased with increasing emissions of between 9.1 and 287.2 mg/day. Catches in white traps were significantly larger (17.4-fold) than those in green traps when both were baited with anethole, an already known attractant; however, the trap color was not significant when a more attractive lure, 2-phenylethanol, was used. The use of a single funnel trap baited with 2 g of 2-phenylethanol at a heavily infested nursery exhibited promising results for mass trapping. Approximately 90,000 beetles of both sexes, which nearly corresponds to the estimated maximum population per 1000 m2, were captured within six days.  相似文献   

4.
Floral color has been shown to influence flower selection by butterflies, but few studies have investigated the role of floral scent. In this study, adults of Heliconius melpomene L. (Lepidoptera: Nymphalidae: Heliconiinae) were tested in two-choice bioassays to investigate their ability to distinguish floral scent of the butterfly pollinated plant Lantana camara L. (Verbenaceae) from other plant scents. The relative importance of floral scent vs. color was also studied. Butterfly foraging behavior was measured as probing with proboscis. This probing, on floral models varying in scent and color, was timed. When given a choice of floral and vegetative scents of L. camara, newly emerged butterflies preferred floral scent, indicating an innate response to floral scents. When butterflies were conditioned to L. camara floral scent by offering the scent with yellow color and sugar water, yellow color elicited stronger feeding responses than did the floral scent. However, the floral scent of L. camara was preferred to that of the novel species Philadelphus coronarius L. (Hydrangiaceae). The floral scent of L. camara was dominated by tepenoid compounds, while that of P. coronarius by fatty acid derivatives, thus demonstrating totally different compositions. It is concluded that, while H. melpomene butterflies often use visual floral traits when selecting which flowers to visit, floral scents elicit behavioral responses that initiate and maintain foraging on flowers.  相似文献   

5.
Field observations revealed that flowers of Osmanthus fragrans attract few insect species despite their strong scent and vivid coloration (yellowish orange). Floral volatiles of the plant were thus examined for suspected repellency to Pieris rapae, a potential visitor that never visits this flower. The influence of odor components on the foraging behavior of adult butterflies was assessed by two behavioral bioassays: proboscis extension reflex (PER) in response to olfactory stimuli and the frequency of visits to artificial flowers. In the PER bioassays, a binary mixture composed of a test material and 2-phenylethanol (a positive standard compound) was used, and the negative effect of test materials was appraised based on the degree of suppression caused compared with the original PER performance evoked by 2-phenylethanol alone. Isopentane extract of the flower exhibited significant deterrency in the PER test and remarkable repellency in the flower-visiting experiment, thereby suggesting the presence of a repellent(s) in the floral volatiles. Fractionation of the extract by silica gel column chromatography yielded an active fraction (based on PER performance), which, upon GC and GC-MS analyses, was found to consist of -decalactone, -ionone, and linalool oxide (LO) isomers (furanosides and pyranosides) as major components together with small amounts of linalool and -ionone. -Decalactone was strongly deterrent in the PER test, and -ionone and all LO isomers were weakly deterrent, while the other compounds exhibited no deterrency. In the flower-visiting tests, -decalactone showed notable repellency, whereas -ionone had no repellent effect. Among the LO isomers, at least furanosides (cis/trans mixture) and cis-pyranoside were found to be weakly repellent. On the other hand, the butterfly showed strong to weak EAG responses to LO furanosides, cis-LO pyranoside, -decalactone, and -ionone in decreasing order of intensity. The present results clearly indicate that the repellency of a compound is correlated with its deterrent effect on PER but not necessarily with antennal sensitivity.  相似文献   

6.
Electroantennograms (EAGs) from field-collectedHyles lineata moths were recorded in response to 10 individual floral volatiles identified fromClarkia breweri (Onagraceae), to 22 scent compounds produced by other moth-pollinated flowers and to eight ubiquitous green leaf volatiles. Females' EAGs were generally 1.5- to 2-fold greater than those observed for male moths. Female:male EAG rank orders were significantly correlated, but marked differences in order were observed for some compounds (e.g., benzyl alcohol, cinnamic aldehyde, geraniol, and linalool). Linalool, benzyl acetate, methyl salicylate, and pyranoid linalool oxide elicited the largest EAG responses (–1.2 to –0.8 mV) among scent compounds fromC. breweri. EAG responses were significantly lower for monoterpenes as a pooled compound class than for aromatic esters, alcohols and aldehydes, fatty acid derivatives, N-bearing compounds and oxygenated terpenoids. EAG responses to structurally related scent compounds were not significantly different in most cases. Both male and femaleH. lineata were sensitive to mostC. breweri scent compounds at 10–2 to 10–4 µg/µl doses, and rank order in potency varied with the dose/concentration tested.H. lineata's olfactory sensitivity to diverse volatile compounds across a range of doses/concentrations suggests that a broad array of volatiles could function as floral attractants for foraging hawkmoths.  相似文献   

7.
Antennal Responses to Floral Scents in the Butterfly Heliconius melpomene   总被引:2,自引:0,他引:2  
Floral scent, together with visual floral cues, are important signals to adult butterflies searching for food-rewarding plants. To identify which compounds in a floral scent are more attractive and, thus, of biological importance to foraging butterflies, we applied electrophysiological methods. Antennal responses of male and female adults of the tropical butterfly Heliconius melpomene L. (Lepidoptera: Nymphalidae: Heliconiinae) to individual compounds of natural floral scents and synthetic floral scent mixtures were investigated using gas chromatography–electroantennographic detection (GC-EAD). The natural floral scents included those of two tropical plant species, Lantana camaraL. (Verbenaceae) and Warszewiczia coccinea (Vahl) Kl. (Rubiaceae), and two temperate species, Buddleja davidii Franchet (Loganiaceae) and Cirsium arvense (L.) Scop. (Asteraceae). The two synthetic floral scent mixtures contained many of the compounds found in the natural scents, but all in equal quantities. Compounds both present in relatively high abundance in the floral scents and detected exclusively in the floral parts of the plant, such as linalool, linalool oxide (furanoid) I and II, oxoisophoroneoxide, and phenylacetaldehyde, elicited the strongest antennal responses, suggesting that they may reflect adaptations by the plant to attract butterfly pollinators. However, other compounds also present in high abundance in the floral scent, but detected in the vegetative as well as floral plant parts, either elicited strong antennal responses, such as trans--ocimene and benzaldehyde, or failed to elicit antennal responses, such as the sesquiterpenes -caryophyllene and -humulene from L. camara. The most volatile monoterpene alkenes in the synthetic scent mixtures elicited only low or no responses. Furthermore, the overall antennal responses were stronger in females than in males. The findings suggest that several floral scent volatiles, especially those of exclusively floral origin, are of high biological significance to H. melpomene butterflies. These include compounds of different biosynthetic origins belonging to the benzenoids, monoterpenoids, and irregular terpenoids.  相似文献   

8.
We investigated postpollination changes in fragrance composition and emission rates, as well as pollinator discrimination in hand-pollinated flower heads of two thistle species: Canada thistle (Cirsium arvense) and sandhill thistle (C. repandum). Following pollination, neither species emitted any novel compounds that could function as repellents. Scent emission rates declined in pollinated plants of both species by approximately 89% within 48 hr. This decline was evident in all 13 scent components of C. arvense. Apis mellifera, the dominant pollinator in the study population of C. arvense, was nearly three times more likely to visit an unpollinated rather than a pollinated flower head. A more complex pattern was observed for C. repandum, whose scent comprised 42 compounds. Quantities of aromatic and sesquiterpenoid volatiles declined after pollination, whereas two classes of scent compounds, fatty acid derivatives and monoterperpenoids, continued to be emitted. In C. repandum, discrimination against pollinated flower heads by Papilio palamedes (its primary pollinator) was not as marked. Unpollinated control plants of both species maintained moderate levels of scent production throughout this experiment, demonstrating that senescence and floral advertisement may be delayed until pollination has occurred. We expect postpollination changes in floral scent contribute to communication between plants with generalized pollinator spectra and their floral visitors. This study provides the first field study of such a phenomenon outside of orchids.  相似文献   

9.
The evolution of floral scent as a plant reproductive signal is assumed to be driven by pollinator behavior, with little attention paid to other potential selective forces such as herbivores. I tested 10 out of the 13 compounds emitted by dioecious Cirsium arvense, Canada thistle, including 2-phenylethanol, methyl salicylate, p-anisaldehyde, benzaldehyde, benzyl alcohol, phenylacetaldehyde, linalool, furanoid linalool oxides (E and Z), and dimethyl salicylate. Single compounds (and one isomer) set out in scent-baited water-bowl traps trapped over 10 species of pollinators and 16 species of floral herbivores. The two dominant components of the fragrance blend of C. arvense, benzaldehyde and phenylacetaldehyde, trapped both pollinators and florivores. Other compounds attracted either pollinators or florivores. Florivores of C. arvense appear to use floral scent compounds as kairomones; by advertising to pollinators, C. arvense also attracts its own enemies.  相似文献   

10.
Evolutionary shifts in pollination systems within a plant genus are commonly associated with changes in floral scent, reflecting selection mediated through the sensory systems of various pollinators. The most common cetoniine beetle pollinator of grassland Protea species in South Africa, Atrichelaphinis tigrina, previously has been shown to have a strong preference for the fruity floral scent of these plants over the weak scent of their bird-pollinated congeners. However, it is not known which of the many compounds found in the scent of beetle pollinated Protea species play a role for pollinator attraction. Electroantennograms (EAG) from A. tigrina beetles were recorded in response to 15 compounds emitted by Protea flower heads. EAG responses to all 15 compounds were significantly greater than those to the paraffin solvent in which they were diluted. The greatest responses were observed for aromatics (anisole, methyl benzoate, methyl salicylate, benzaldehyde) followed by the monoterpene β-linalool, which can comprise up to 66 % of fruity Protea scents. Five compounds that elicited EAG responses (benzaldehyde, β-linalool, (E/Z)-linalool oxide (furanoid), methyl benzoate, and methyl salicylate) were tested in commercially available yellow bucket traps in the field to test their attractiveness to beetles. Traps baited with methyl benzoate, β-linalool, (E/Z)-linalool oxide (furanoid), and methyl salicylate caught significantly more insects than did those containing paraffin only. Methyl benzoate also was more specifically attractive to A. tigrina than was (E/Z)-linalool oxide (furanoid) and paraffin baited controls. A second field experiment using a combination of linalool vs. paraffin baited yellow or green traps showed that trap color had a significant effect on the number of trapped beetles. Yellow traps yielded a ten-fold higher number of insect catches than did green traps. However, the combination of yellow color and the scent compound linalool yielded the highest number of catches. This study has shown that the cetoniine beetle A. tigrina can detect a variety of floral compounds and is attracted to compounds comprising a large proportion of the blend that makes up fruity Protea scents, adding support for the hypothesis that change in scent chemistry during the shift from bird to cetoniine beetle pollination in this genus were mediated by beetle sensory preferences.  相似文献   

11.
Seven electrophysiologically active compounds were detected in air-entrained headspace samples of live flowers of Tagetes erectaanalyzed by gas chromatography (GC) linked to a female Helicoverpa armigeraelectroantennograph (EAG) using polar and nonpolar capillary columns. These compounds were subsequently identified using GC linked to mass spectrometry as benzaldehyde, (S)-(–)-limonene, (R,S)-(±)-linalool, (E)-myroxide, (Z)--ocimene, phenylacetaldehyde, and (R)-(–)-piperitone. Electrophysiological activity was confirmed by EAG with a 1-g dose of each compound on filter paper eliciting EAG responses that were significantly greater than the solvent control response from female moths. Wind-tunnel bioassays with T. erectaheadspace samples, equivalent to 0.4 flower/hr emission from a live flower, elicited a significant increase in the number of upwind approaches from female H. armigerarelative to a solvent control. Similarly, a seven-component synthetic blend of EAG-active compounds identified from T. erectapresented in the same ratio (1.0 : 1.6 : 0.7 : 1.4 : 0.4 : 5.0 : 2.7, respectively) and concentration (7.2 g) as found in the natural sample elicited a significant increase in the number of upwind approaches relative to a solvent control during a 12-min bioassay that was equivalent to that elicited by the natural T. erectafloral volatiles.  相似文献   

12.
Electroantennograms (EAGs) were recorded from two predatory insect species, the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea in response to semiochemicals emitted from one of their prey species, the pea aphid Acyrthosiphon pisum and their host plant. EAG responses were also recorded from C. maculata in response to extracts from individuals of the opposite sex and to extracts from an herbaceous plant, catnip Nepeta cataria. Extracts of catnip and two sex pheromone components of aphids, (4aS,7S,7aR)-nepetalactone and (1R,4aS,7S,7aR)-nepetalactol, elicited significant EAG responses from the antennae of both predatory species. Of 10 corn volatile compounds tested, C. carnea adults responded most strongly to 2-phenylethanol and (E)--farnesene. A significant difference in EAG response to extracts of corn leaf collections was observed between male and female C. carnea. In C. maculata, significant EAG responses were elicited by most of the tested corn volatile compounds, except -pinene and (E)-2-hexenal. The highest EAG responses were observed in response to (E)--farnesene, -terpineol, 2-phenylethanol, and -caryophyllene. Sexual differences in EAG responses of C. maculata were only found in response to 1-octen-3-ol. Male antennae of C. maculata produced significant EAG responses to extracts from conspecific females, but not to males, which indicates that some chemicals from females could be involved in sexual communication. A significant EAG response also was recorded in response to the extracts of fluids produced during reflex bleeding. Male and female antennae of both species exhibited similar dose–response curves to most of the selected compounds, although female C. maculata antennae exhibited higher thresholds in response to several compounds including -terpineol, (Z)-3-hexenol, and (4aS,7S,7aR)-nepetalactone. Field tests showed that 2-phenylethanol was highly attractive to both sexes of the two investigated species. Only C. maculata was attracted to traps baited with -terpineol.  相似文献   

13.
The two-spotted stinkbug, Perillus bioculatus, is a predator of the Colorado potato beetle (CPB), Leptinotarsa decemlineata. Behavioral tests revealed that P. bioculatus is attracted to potato plants, Solanum tuberosum L. (Solanaceae), infested by the CPB. Electroantennograms from the antennae of P. bioculatus were recorded in response to compounds present in the headspace of CPB-infested potato plants. (Z)-3-Hexen-1-ol and 2-phenylethanol elicited the highest EAG amplitudes. Linalool, 4,8-dimethyl-1,3(E),7-nonatriene, nonanal, decanal, and (R)-(+)-limonene evoked lower EAG amplitudes. The major headspace components -caryophyllene and -selinene produced only weak EAG responses. Antennal sensitivity of the CPB to (Z)-3-hexen-1-ol was higher than that of P. bioculatus, whereas the stinkburg was more sensitive to 2-phenylethanol, -caryophyllene, (R)-(+)-limonene, and decanal. Among these compounds, 2-phenylethanol is of special interest since it was observed to be emitted by potato foliage only after being damaged by CPBs.  相似文献   

14.
A novel technique for the simultaneous monitoring of electroan-tennogram (EAG) and conditioned proboscis extension (CPE) responses of honey bees to the effluent from a gas chromatograph (GC) was developed to locate biologically active components in blends of plant volatiles and to investigate odor recognition at the peripheral and behavioral levels. A six-component mixture, comprising compounds previously identified as oilseed rape floral volatiles, was used as the stimulus. Standard CPE and EAG recordings were done as a reference. EAG responses were elicited from unconditioned bees by all the components presented either in the coupled or the standard mode. Conditioned bees gave larger EAG responses than unconditioned bees, suggesting that antennal sensitivity is enhanced by conditioning. At the behavioral level, in both the standard and the coupled modes, only conditioned bees showed the proboscis extension response, with the majority of individuals responding to linalool, 2-phenylethanol, and benzyl alcohol.  相似文献   

15.
Strong Conservation of Floral Scent Composition in Two Allopatric Yuccas   总被引:1,自引:0,他引:1  
Floral scent has been suggested to play a key role in the obligate pollination mutualism between yuccas and yucca moths. We analyzed floral fragrance compounds of Yucca elata with headspace collection followed by gas chromatography and mass spectrometry, and compared the odor blend with the recently characterized blend of the allopatric Yucca filamentosa. A principal component analysis based on 20 scent compounds revealed that the floral odor bouquets of Y. elata and Y. filamentosa are virtually identical. Although the two plants belong to the same section of capsular-fruited yuccas, they rely on different species of Tegeticula moths for pollination and probably have been allopatric for several million years. Yet, their floral odor blends are very similar, which may indicate that strong selection by obligate pollinators counteracts drift or divergence in this trait.  相似文献   

16.
The coffee white stem borer, Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae), is the foremost pest of arabica coffee in India, Sri Lanka, China, Vietnam, and Thailand. Previous work showed that female beetles were attracted to traps baited with male beetles. Analyses of volatiles from male X. quadripes of Indian origin by gas chromatography (GC) linked to electroantennographic (EAG) recording from a female beetle antenna showed three male-specific components comprising more than 90% of the volatiles, two of which elicited EAG responses. The major EAG-active component was produced at up to 2 μg hr−1 insect−1 and was identified as (S)-2-hydroxy-3-decanone (I) by comparison of GC data, and mass (MS), infrared, and nuclear magnetic resonance (NMR) spectra with those of synthetic standards. The second component was identified as 3-hydroxy-2-decanone (II) produced in part by isomerization of I under the conditions of the GC analysis, although the NMR spectrum suggested it is naturally produced at up to 7% of I. The minor component that elicited an EAG response, present at 7% of the amount of I, was identified as (S,S)-2,3-dihydroxyoctane (III) from GC and MS data. 2-Hydroxy-3-octanone (0.2–0.5% of I), 2,3-decanedione (2% of I), 2-phenylethanol (3% of I), and octanoic acid (4% of I) were also identified in volatiles from male beetles. A general, stereospecific synthetic route to the enantiomers of 2-hydroxy-3-alkanones from the enantiomers of ethyl lactate was developed. The enantiomers of III were synthesized from (E)-2-octene by Sharpless asymmetric dihydroxylation. (S)-(I) was attractive to male X. quadripes in laboratory bioassays, but addition of (S,RS)-(III) at 10% of I reduced attractiveness. In field trials carried out in India with sticky, cross-vane traps, (S)- and (RS)-(I) attracted male X. quadripes and addition of (S,S)-(III) at 10% of I reduced attractiveness. Significant numbers of female Demonax balyi Pascoe (Coleoptera: Cerambycidae) were sometimes caught in traps baited with (S)-(I) alone.  相似文献   

17.
The Ethiopian fruit fly, Dacus ciliatus, is an oligophagous pest of cucurbit crops, particularly melons, cucumbers, and marrows (summer squash). The present study aimed to identify host attractants for D. ciliatus and was guided by a behavioral bioassay and an electrophysiological assay. We tested volatile compounds from the fruits of a host plant, ripe and unripe Galia melon, Cucumis melo var. reticulates. Both sexes were attracted to melon volatiles. Those of ripe melon were preferred. Gas chromatography-electroantennographic detection analysis of the behaviorally active ripe melon volatiles consistently showed that 14 compounds elicited similar antennal responses from both sexes. Twelve compounds were identified by gas chromatography-mass spectrometry (GC-MS) using GC-MS libraries, retention indices (RI), and authentic standards. The electrophysiological activities of the compounds that were present at sufficient levels for identification, benzyl acetate, hexanyl acetate, (Z)-3-hexenyl acetate, (Z)-3-octenyl acetate, octanyl acetate, (Z)-3-decenyl acetate, and (E)-β-farnesene, were evaluated at six different dosage levels by using electroantennography (EAG). Benzyl and hexanyl acetates elicited dose responses only in males, while other tested compounds elicited dose responses in both sexes. The strongest responses were observed for doses between 100 ng and 10 μg. The dose response, in terms of attractiveness to synthetic compounds within the active range (as determined by EAG), also was evaluated in the behavioral bioassay. Synthetic acetates were attractive to both sexes when tested individually. Significant attraction was observed when individual compounds were applied in the bioassay arena at doses of 0.5–1 μg/dispenser. Blends of compounds in equal proportions also were attractive to the insects. The most attractive blend was a mixture of four or five identified acetates. The addition of an equal proportion of (E)-β-farnesene to this mixture had a deterrent effect.  相似文献   

18.
Many bees are oligolectic and collect pollen for their larvae only from one particular plant family or genus. Here, we identified flower scent compounds of two Salix species important for the attraction of the oligolectic bee Andrena vaga, which collects pollen only from Salix. Flower scent was collected by using dynamic-headspace methods from Salix caprea and S. atrocinerea, and the samples were subsequently analyzed by coupled gas chromatographic–electroantennographic detection (GC-EAD) to detect possible attractants of A. vaga. EAD active compounds were identified by gas chromatography coupled to mass spectrometry. Both Salix species had relatively similar scent profiles, and the antennae of male and female bees responded to at least 16 compounds, among them different benzenoids as well as oxygenated monoterpenoids and sesquiterpenoids. The strongest antennal responses were triggered by 1,4-dimethoxybenzene, and in field bioassays, this benzenoid attracted females of A. vaga at the beginning of its flight period, but not at the end.  相似文献   

19.
During development of figs on Ficus hispida, only the female floral stage is receptive to its pollinator Ceratosolen solmsi marchali. After this stage, the quantity of fig odor decreases. The effects of F. hispida volatiles from receptive figs (figs at the female floral stage, when they are pollinated) and interfloral figs (between the female floral and male floral stages) on their pollinator were studied, together with responses to compounds present in the odor. Odors emitted by both receptive and interfloral figs were attractive to the pollinator. However, wasps preferred the odor of receptive figs to that of interfloral figs even though the quantity of interfloral volatiles increased. Three monoterpenes that included linalool (major constitutent) and two minor compounds limonene and β-pinene from the receptive fig volatiles were used to test the pollinator responses. The levoisomer and racemic mixtures of linalool were attractive to the pollinator at high doses, but the dextroisomer was neutral. (±)-Limonene and (−)-β-pinene at high doses were even less attractive to the pollinator than clean air and were neutral at low doses, while (R)-(+)-, (S)-(−)-limonene were neutral at all doses. In blend tests, all four mixtures of (±)-linalool or (S)-(−)-linalool combined with (±)-limonene or (−)-β-pinene attracted C. solmsi marchali when administered at high doses. (R)-(+)-linalool and (−)-β-pinene enhanced the attractiveness of (S)-(−)-linalool to the pollinator, while enantiomers of limonene did not. These results suggest that both quality and quantity of fig volatiles regulate C. solmsi marchali response and that quality is the main host-finding and floral stage-distinguishing cue for the pollinator. Synergistic effects of some compounds may play a role in enhancing attractiveness of the active compounds.  相似文献   

20.
Most flowers offer nectar and/or pollen as a reward for pollinators. However, some plants are known to produce mostly fatty oil in the flowers, instead of nectar. This oil is exclusively collected by specialized oil-bees, the pollinators of the oil-plants. Little is known about chemical communication in this pollination system, especially how the bees find their hosts. We collected the floral and vegetative scent emitted by oil-producing Lysimachia punctata by dynamic headspace, and identified the compounds by gas chromatography coupled to mass spectrometry. Thirty-six compounds were detected in the scent samples, several of which were flower-specific. Pentane extracts of flowers and floral oil were tested on Macropis fulvipes in a biotest. Flower and oil extracts attracted the bees, and some of the compounds identified are seldom found in the floral scent of other plants; these may have been responsible for the attraction of the bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号