首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cells in which the lipoprotein assembly process had been inactivated by brefeldin A (BFA), membrane-associated apoB-100 disappeared without forming lipoproteins or being secreted, indicating that it was degraded. Reactivation of the assembly process by chasing the cells in the absence of BFA, gave rise to a quantitative recovery of the membrane-associated apoB-100 in the very low density lipoprotein (VLDL) fraction in the medium. These results indicate that the membrane-associated apoB-100 can be converted to VLDL. A new method was developed by which the major amount (88%) of microsomal apoB-100 but not integral membrane proteins could be extracted. The major effect of this method was to increase the recovery of apoB-100 that banded in the LDL and HDL density regions, suggesting that the membrane-associated form of apoB-100 is partially lipidated. We also investigated the role of the microsomal triglyceride transfer protein (MTP) in the assembly of apoB-100 VLDL using a photoactivatable MTP inhibitor (BMS-192951). This compound strongly inhibited the assembly and secretion of apoB-100 VLDL when present during the translation of the protein. To investigate the importance of MTP during the later stages in the assembly process, the cells were preincubated with BFA (to reversibly inhibit the assembly of apoB-100 VLDL) and pulse-labeled (+BFA) and chased (+BFA) for 30 min to obtain full-length apoB-100 associated with the microsomal membrane. Inhibition of MTP after the 30-min chase blocked assembly of VLDL. This indicates that MTP is important for the conversion of full-length apoB-100 into VLDL. Results from experiments in which a second chase (-BFA) was introduced before the inactivation of MTP indicated that only early events in this conversion of full-length apoB-100 into VLDL were blocked by the MTP inhibitor. Together these results indicate that there is a MTP-dependent "window" in the VLDL assembly process that occurs after the completion of apoB-100 but before the major amount of lipids is added to the VLDL particle. Thus the assembly of apoB-100 VLDL from membrane-associated apoB-100 involves an early MTP-dependent phase and a late MTP-independent phase, during which the major amount of lipid is added.  相似文献   

2.
The initial assembly of apolipoprotein B100 (apoB) into lipoprotein particles occurs cotranslationally. To examine steps required to initiate this process, the intracellular folding and assembly of the amino-terminal 28% of apoB (apoB28) was examined using several criteria including nonreducing gel electrophoresis, sensitivity to dithiothreitol (DTT)-mediated reduction, and buoyant density gradient centrifugation. In hepatoma cells, after a 1-min pulse with radiolabeled amino acids, labeled apoB28 migrated during gel electrophoresis in the folded position and was resistant to reduction in vivo with 2 mM DTT. A similar rate and extent of folding was observed in Chinese hamster ovary cells, a microsomal triglyceride transfer protein (MTP)-negative cell line that can neither lipidate nor efficiently secrete apoB28. Amino-terminal folding of apoB28 was essential for its subsequent intracellular lipidation as apoB28 synthesized in hepatoma cells under reducing conditions remained lipid poor (d > 1.25 g/ml) and was retained intracellularly. Upon DTT removal, reduced apoB28 underwent a process of rapid (t1/2 approximately 2 min) post-translational folding followed by a slower process of MTP-dependent lipidation. As with the cotranslational assembly pathway, post-translational lipidation of apoB28 displayed a strict dependence upon amino-terminal folding. We conclude that: 1) folding of the amino-terminal disulfide bonded domain of apoB is achieved prior to the completion of translation and is independent of MTP and events associated with buoyant lipoprotein formation and 2) domain-specific folding of apoBs amino-terminal region is required to initiate MTP-dependent lipid transfer to nascent apoB in the hepatic endoplasmic reticulum.  相似文献   

3.
Several studies have demonstrated protein-protein interactions between microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). However, the binding sites involved in these interactions have not been elucidated. To identify an MTP binding site in apoB, we have expressed several apoB sequences as fusion proteins with the eight-amino acid FLAG peptide. The chimeras were transiently expressed in COS cells, and conditioned media were used to study the binding of these sequences to either immobilized or soluble MTP. A polypeptide containing amino acids 270-570 (B:270-570), but not 1-300, bound to MTP. AGI-S17, an antagonist of apoB-MTP binding, inhibited the binding of B:270-570 to MTP but not to M2, a monoclonal antibody that recognizes the FLAG peptide. These data indicated that B:270-570 contains an MTP binding site. Next, sequences within 270-570 were subjected to C-terminal truncations at natural proline residues. B:270-509 bound less efficiently than B:270-570, whereas, B:270-430 and other shorter chimeras did not bind to MTP. Furthermore, truncations at amino acids 502 and 509 decreased MTP binding by 73 and 42%, respectively. These data indicate that B:430-570 in the alpha1-globular domain of apoB plays a crucial role in MTP binding and presumably in the initiation and maturation of apoB-containing lipoproteins.  相似文献   

4.
The microsomal triglyceride transfer protein (MTP) catalyzes the transfer of triglyceride, cholesteryl ester, and phosphatidylcholine between phospholipid surfaces. The 97-kD subunit imparts lipid transfer activity and thus plays a role in the assembly of apolipoprotein B (apoB)-containing lipoproteins. We tested whether polymorphisms in the promoter region of the large subunit of the MTP gene might be related to different plasma lipid variables, atherosclerosis, and the risk of myocardial infarction (MI). We screened 838 bp in the promoter region of the MTP gene by PCR-SSCP and identified two polymorphisms at positions -400 (MTP/-400 (A-->t)) and -164 (MTP/-164 (T-->c)), the latter being situated on a putative sterol responsive element (SRE) consensus sequence. The two polymorphisms, investigated in 622 male patients with MI and in 728 age-matched controls participating in the ECTIM Study, were in nearly complete linkage disequilibrium (|D'| = +0.98, less frequent alleles being preferentially associated, P < 0.001). There were no significant differences in genotype or allele frequencies between patients with MI and controls. Moreover, no significant associations between the two promoter polymorphisms and several lipid variables measured in the control groups of the ECTIM Study or coronary artery stenosis, angiographically assessed in patients with MI, were detected. We conclude that these MTP polymorphisms are unrelated to lipid variables or coronary heart disease in this study. Identification of two polymorphisms in the promoter of the microsomal triglyceride transfer protein (MTP) gene: lack of association with lipoprotein profiles.  相似文献   

5.
The gene for the microsomal triglyceride transfer protein (MTP) is defective in subjects with the genetic disease abetalipoproteinemia, indicating that MTP is essential for the assembly of apolipoprotein B containing lipoproteins. In vitro, MTP is a lipid molecule binding protein that catalyzes lipid transport between membranes by a shuttle mechanism. In this study, the lipid binding properties of MTP were examined. MTP was incubated with donor phosphatidylcholine vesicles of varying neutral lipid composition. MTP was subsequently reisolated by ultracentrifugation, and MTP-bound lipid was quantitated. When the triolein content of the vesicles was increased up to 4 mol %, neutral lipid binding to MTP increased proportionately, while phosphatidylcholine binding appeared to remain constant around two molecules per MTP. Using phosphatidylcholine emulsions containing 60 mol % triolein as the donor particles resulted in only a slight increase in triolein binding to MTP. The highest triolein:MTP ratio observed was (0.20-0.25):1. Differences in the neutral and phospholipid binding properties of MTP were observed by measuring the transport of lipid from MTP to acceptor vesicles. Transport of triolein was rapid and complete, while phosphatidylcholine transport was biphasic, containing rapid and slow phases. These results indicated that MTP contains more than one class of lipid molecule binding site. Measurements of fluorescent lipid transport from donor vesicles to MTP supported this hypothesis. The transport of pyrene-labeled triglyceride from donor particles to MTP was rapid, while phosphatidylcholine transfer had fast and slow phases. From these data, we propose that MTP contains at least two distinct classes of lipid molecule binding sites that differ in function. The fast site or sites are responsible for lipid transport.  相似文献   

6.
Three mitogen-activated protein kinase pathways are up-regulated during the activation of T lymphocytes, the extracellular signal-regulated kinase (ERK), Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase pathways. To examine the effects of blocking the ERK pathway on T cell activation, we used the inhibitor U0126, which has been shown to specifically block mitogen-activated protein kinase/ERK kinase (MEK), the kinase upstream of ERK. This compound inhibited T cell proliferation in response to antigenic stimulation or cross-linked anti-CD3 plus anti-CD28 Abs, but had no effect on IL-2-induced proliferation. The block in T cell proliferation was mediated by down-regulating IL-2 mRNA levels. Blocking Ag-induced proliferation by inhibiting MEK did not induce anergy, unlike treatments that block entry into the cell cycle following antigenic stimulation. Surprisingly, induction of anergy in T cells exposed to TCR cross-linking in the absence of costimulation was also not affected by blocking MEK, unlike cyclosporin A treatment that blocks anergy induction. These results suggest that inhibition of MEK prevents T cell proliferation in the short term, but does not cause any long-term effects on either T cell activation or induction of anergy. These findings may help determine the viability of using mitogen-activated protein kinase inhibitors as immune suppressants.  相似文献   

7.
8.
There is growing evidence that the amino-terminal globular domain of apolipoprotein B (apoB) is essential for lipoprotein particle formation in the hepatic endoplasmic reticulum. To identify the structural requirements for its function in lipoprotein assembly, cysteine (Cys) pairs required to form the seven disulfide bonds within the amino-terminal 21% of apoB were replaced in groups or individually by serine. Substitution of Cys pairs required for formation of disulfide bonds 1-3 or 4-7 (numbered from amino to carboxyl terminus) completely blocked the secretion of apoB28 in transfected HepG2 cells. To identify the specific disulfide bonds required for secretion, Cys pairs were mutated individually. Substitution of Cys pairs required for disulfide bonds 1, 3, 5, 6, or 7 had little or no impact on apoB28 secretion or buoyant density. In contrast, individual substitution of Cys pair 2 (amino acid residues 51 and 70) or 4 (218 and 234) severely inhibited apoB28 secretion and its capacity to undergo intracellular assembly with lipid. The same assembly and secretion defects were observed when these mutations were expressed as part of apoB50. These studies provide direct evidence that the ability of the internal lipophilic regions of apoB to engage in the recruitment and sequestration of lipid during translation is critically dependent upon a structural configuration contained within or affected by the amino-terminal 5% of the protein.  相似文献   

9.
When lipid synthesis is limited in HepG2 cells, apoprotein B100 (apoB100) is not secreted but rapidly degraded by the ubiquitin-proteasome pathway. To investigate apoB100 biosynthesis and secretion further, the physical and functional states of apoB100 destined for either degradation or lipoprotein assembly were studied under conditions in which lipid synthesis, proteasomal activity, and microsomal triglyceride transfer protein (MTP) lipid-transfer activity were varied. Cells were pretreated with a proteasomal inhibitor (which remained with the cells throughout the experiment) and radiolabeled for 15 min. During the chase period, labeled apoB100 remained associated with the microsomes. Furthermore, by crosslinking sec61beta to apoB100, we showed that apoB100 remained close to the translocon at the same time apoB100-ubiquitin conjugates could be detected. When lipid synthesis and lipoprotein assembly/secretion were stimulated by adding oleic acid (OA) to the chase medium, apoB100 was deubiquitinated, and its interaction with sec61beta was disrupted, signifying completion of translocation concomitant with the formation of lipoprotein particles. MTP participates in apoB100 translocation and lipoprotein assembly. In the presence of OA, when MTP lipid-transfer activity was inhibited at the end of pulse labeling, apoB100 secretion was abolished. In contrast, when the labeled apoB100 was allowed to accumulate in the cell for 60 min before adding OA and the inhibitor, apoB100 lipidation and secretion were no longer impaired. Overall, the data imply that during most of its association with the endoplasmic reticulum, apoB100 is close to or within the translocon and is accessible to both the ubiquitin-proteasome and lipoprotein-assembly pathways. Furthermore, MTP lipid-transfer activity seems to be necessary only for early translocation and lipidation events.  相似文献   

10.
Mammalian oocytes are arrested at the diplotene phase of the first meiotic division until ovulation. In the mouse, germinal vesicle breakdown (GVBD) and progression to metaphase II is thought to be triggered by a positive signal originating in the follicular cells following stimulation by the luteinizing hormone (LH) surge. Isolated, fully grown oocytes can also undergo spontaneous reinitiation of meiosis in vitro in the absence of gonadotrophin stimulation. To investigate the mechanism of meiotic resumption, inhibitors of phosphoinositide metabolism and an intracellular calcium chelator were used during maturation in vitro under different conditions. In a series of experiments, isolated cumulus cell-oocyte complexes (COCs) maintained in meiotic arrest by hypoxanthine were induced to resume meiosis by treatment with follicle-stimulating hormone (FSH). Under these conditions, both LiCl and neomycin, which inhibit phosphoinositide hydrolysis, produced a dose-dependent inhibitory effect on meiotic resumption. Similar results were obtained when FSH-induced meiotic resumption was observed in the presence of the acetoxymethyl ester form of 1, 2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), an intracellular calcium chelator. In hypoxanthine-arrested oocytes, GVBD induced by epidermal growth factor (EGF), which mimics FSH action in in vitro maturation, was also repressed by LiCl and neomycin. Conversely, meiotic resumption triggered by a pulse of 8-bromo-cyclic adenosine monophosphate (8-Br cAMP) was not affected by these two inhibitors. In experiments in which oocytes were cultured under conditions which permit spontaneous meiotic maturation, resumption of meiosis was not affected by either inhibition of phosphoinositide hydrolysis or chelation of intracellular calcium. Therefore, it appears that meiotic resumption induced by hormone stimulation requires activation of the phosphoinositide pathway and mobilization of intracellular calcium. In contrast, spontaneous maturation probably occurs through a different mechanism because it is not affected by inhibition of this signaling pathway.  相似文献   

11.
PURPOSE: To assess the diagnostic yield of magnetic resonance (MR) imaging in patients with symptoms and signs related to the trigeminal nerve. MATERIALS AND METHODS: Medical records and MR imaging studies in 112 consecutive patients referred for MR imaging over 5 years were evaluated. MR images were independently reviewed by two neuroradiologists unaware of the clinical findings. Signs and symptoms at presentation were associated with either a positive or negative MR imaging outcome. Logistic regression analysis was performed to identify clinical variables related to imaging results. RESULTS: Sixty-eight (61%) patients had positive MR imaging findings related to symptoms and signs. Trigeminal neuralgia was correlated with a negative MR imaging outcome (P < .001). Numbness (P < .01), impaired sensation (P < .001), other neurologic symptoms and signs (P < .01), progression of symptoms and signs (P < .001), and duration of symptoms of less than 1 year (P < .001) corresponded to a positive MR imaging outcome. Two regression models, each with three clinical parameters (progression, duration < 1 year, and trigeminal neuralgia or impaired sensation), had comparable accuracy for prediction of the MR imaging outcome. CONCLUSION: Clinical findings can be used to identify groups in which a high or a low yield of MR imaging is correlated with symptoms and signs related to the trigeminal nerve.  相似文献   

12.
A murine monoclonal antibody, CP.B8, specific for the extracellular portion of the human common gamma (gammac) chain, and its Fab fragment are shown to block the binding of IL-2 to COS-7 cells transfected with the cDNA for the full-length IL-2 receptor beta (IL-2Rbeta) and gammac chains, components which together comprise the intermediate affinity IL-2 receptor (IL-2R) expressed on the surface of resting T cells, NK cells, and on certain intestinal epithelial cells. To investigate the mechanism of this inhibition, the extracellular portions of the IL-2Rbeta and gammac chains were expressed and purified, and their interactions with each other and with IL-2 were studied by gel filtration and by surface plasmon resonance (SPR). By gel filtration, a stable ternary complex was formed by association of the three proteins, while no stable binary complexes were detected between any two of the three proteins. By SPR analysis, IL-2 was shown to associate rapidly with IL-2Rbeta, forming a binary complex with an equilibrium dissociation constant (Kd) of 800 nM, which permitted subsequent association of the gammac chain. Dissociation of the IL-2/IL-2Rbeta/gammac chain complex was significantly slower than dissociation of the IL-2/IL-2Rbeta complex. Using these model systems, we tested the ability of mAb CP.B8 to inhibit the association of the gammac chain with IL-2 and IL-2Rbeta. By gel filtration, mAb CP.B8 formed a stable complex with the gammac chain, preventing its association with IL-2 and IL-2Rbeta. MAb CP.B8 was also capable of dissociating the gammac chain already complexed with IL-2 and IL-2Rbeta. SPR analysis confirmed these findings and showed, in addition, that the Fab fragment of CP.B8 was also capable of inhibiting the association of the gammac chain with the IL-2/IL-2Rbeta complex. We conclude that mAb CP.B8 blocks the second step in the formation of the intermediate affinity IL-2R on the surface of transfected COS-7 cells by binding at or close to a region on the gammac chain that is involved in contact with IL-2 and/or IL-2Rbeta.  相似文献   

13.
The time course of the unfolding characteristics of the protein moiety and of the thermotropic behavior of the core-located apolar lipids of highly homogeneous low-density lipoprotein (LDL) subspecies (d 1.030-1.040 g/mL) have been evaluated during transition metal- and azo radical-induced oxidation using differential scanning calorimetry. Apolipoprotein B100 (apo-B100) structure was highly sensitive to oxidative modification; indeed, a significant loss of thermal stability was observed at initial stages irrespective of whether oxidation was mediated by site-specific binding of copper ions or by free radicals generated during decomposition of azo compounds. Subsequently, thermal protein integrity was destroyed, as a result of potentially irreversible protein unfolding, cross-linking reactions, and aggregation. Our results suggest that even minimal oxidative modification of apo-B100 has a major impact on the stability of this large monomeric protein. By contrast, the core lipids, which consist primarily of cholesteryl esters and triglycerides and play a determinant role in the thermal transition occurring near physiological temperature, preserved features of an ordered arrangement even during propagation of lipid peroxidation.  相似文献   

14.
In apoptosis induced by Reaper in Drosophila, as well as in a number of other systems, it has been suggested that the increased synthesis of ceramide might be a consequence of the activation of the caspase/ICE (Interleukin-1beta converting enzyme) protease pathway involved in cell death, implying that ceramide generation might often be the result rather than the cause of apoptosis. WEHI 231 B cells have previously been shown to undergo apoptosis following exposure to exogenous ceramide and to produce increased amounts of ceramide in response to anti-IgM crosslinking. We show here that in WEHI 231 cells a peptide inhibitor of caspase activity blocks cell death in response to both anti-IgM and exogenous ceramide. However, the induction of ceramide synthesis by WEHI 231 cells in response to anti-IgM crosslinking is not blocked by this peptide. These results indicate that antigen receptor induced ceramide generation in WEHI 231 cells does not require caspase activation, and support the view that ceramide generation in immature B cells may be the cause rather than the consequence of activation of the caspase dependent death pathway.  相似文献   

15.
Purified human serum butyrylcholinesterase, which exhibits cholinesterase, aryl acylamidase, and peptidase activities, was cross-reacted with two different monoclonal antibodies raised against human serum butyrylcholinesterase. All three activities were immunoprecipitable at different dilutions of the two monoclonal antibodies. At the highest concentration of the antibodies used, nearly 100% of all three activities were precipitated, and could be recovered to 90-95% in the immunoprecipitate. The peptidase activity exhibited by the purified butyrylcholinesterase was further characterized using both Phe-Leu and Leu-enkephalin as substrates. The pH optimum of the peptidase was in the range of 7.5-9.5 and the divalent cations Co2+, Mn2+, and Zn2+ stimulated its activity. EDTA and other metal complexing agents inhibited its activity. Thiol agents and -SH group modifiers had no effect. The serine protease inhibitors, diisopropylfluorophosphate and phenyl methyl sulfonyl fluoride, did not inhibit. When histidine residues in the enzyme were modified by diethylpyrocarbonate, the peptidase activity was not affected, but the stimulatory effect of Co2+, Mn2+, and Zn2+ disappeared, suggesting the involvement of histidine residues in metal ion binding. These general characteristics of the peptidase activity were also exhibited by a 50 kD fragment obtained by limited alpha-chymotrypsin digestion of purified butyrylcholinesterase. Under all assay conditions, the peptidase released the two amino acids, leucine and phenylalanine, from the carboxy terminus of Leu-enkephalin as verified by paper chromatography and HPLC analysis. The results suggested that the peptidase behaved like a serine, cysteine, thiol-independent metallopeptidase.  相似文献   

16.
Tyrosinase is the key enzyme in melanin biosynthesis, catalyzing multiple steps in this pathway. The mature glycoprotein is transported from the Golgi to the melanosome where melanin biosynthesis occurs. In this study, we have investigated the effects of inhibitors of N-glycan processing on the synthesis, transport, and catalytic activity of tyrosinase. When B16 mouse melanoma cells were cultured in the presence of N-butyldeoxynojirimycin, an inhibitor of the endoplasmic reticulum-processing enzymes alpha-glucosidases I and II, the enzyme was synthesized and transported to the melanosome but almost completely lacked catalytic activity. The cells contained only 2% of the melanin found in untreated cells. Structural analysis of the N-glycans from N-butyldeoxynojirimycin-treated B16 cells demonstrated that three oligosaccharide structures (Glc3Man7-9) predominated. Removal of the glucose residues with alpha-glucosidases I and II failed to restore enzymatic activity, suggesting that the glucosylated N-glycans do not sterically interfere with the enzyme's active sites. The mannosidase inhibitor deoxymannojirimycin had no effect on catalytic activity suggesting that the retention of glucosylated N-glycans results in the inactivation of this enzyme. The retention of glucosylated N-glycans does not therefore result in misfolding and degradation of the glycoprotein, as the enzyme is transported to the melanosome, but may cause conformational changes in its catalytic domains.  相似文献   

17.
Hepatitis B virus consists of an outer envelope and an inner capsid, or core, that wraps around the small genome plus the viral replication enzyme. The icosahedrally symmetric nucleocapsid is assembled from multiple dimeric subunits of a single 183-residue capsid protein, which must therefore contain interfaces for monomer dimerization and for dimer multimerization. The atomic structure of the protein is not known, but electron microscopy-based image reconstructions suggested a hammerhead shape for the dimer and, very recently, led to a tentative model for the main chain trace. Here we used a combination of interaction screening techniques and functional analyses of core protein variants to define, at the primary sequence level, the regions that mediate capsid assembly. Both the two-hybrid system and the pepscan technique identified a strongly interacting region I between amino acids (aa) 78 and 117 that probably forms part of the dimer interface. Surprisingly, mutations in this region, in the context of a C-terminally truncated but assembly-competent core protein variant, had no detectable effect on assembly. By contrast, mutations in a second region, bordered by aa 113 and 143, markedly influenced capsid stability, strongly suggesting that this region II is the main contributor to dimer multimerization. Based on the electron microscopic data, it must therefore be located at the basal tips of the dimer, experimentally supporting the proposed main chain trace.  相似文献   

18.
A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant Akt (Akt-AA) in which the phosphorylation sites (Thr308 and Ser473) targeted by growth factors are replaced by alanine has now been shown to lack protein kinase activity and, when overexpressed in CHO cells or 3T3-L1 adipocytes with the use of an adenovirus vector, to inhibit insulin-induced activation of endogenous Akt. Akt-AA thus acts in a dominant negative manner in intact cells. Insulin-stimulated protein synthesis, which is sensitive to wortmannin, a pharmacological inhibitor of PI 3-kinase, was abolished by overexpression of Akt-AA without an effect on amino acid transport into the cells, suggesting that Akt is required for insulin-stimulated protein synthesis. Insulin activation of p70 S6 kinase was inhibited by approximately 75% in CHO cells and approximately 30% in 3T3-L1 adipocytes, whereas insulin-induced activation of endogenous Akt was inhibited by 80 to 95%, by expression of Akt-AA. Thus, Akt activity appears to be required, at least in part, for insulin stimulation of p70 S6 kinase. However, insulin-stimulated glucose uptake in both CHO cells and 3T3-L1 adipocytes was not affected by overexpression of Akt-AA, suggesting that Akt is not required for this effect of insulin. These data indicate that Akt acts as a downstream effector in some, but not all, of the signaling pathways downstream of PI 3-kinase.  相似文献   

19.
The human MxA protein is a new specific marker for type I interferon activity both in vitro and in vivo. In the study presented here, this interferon-induced marker, as well as the 2',5'-oligoadenylate synthetases, was measured in circulating mononuclear cells from 21 patients with acute hepatitis A, 20 patients with acute hepatitis B and 14 patients with acute hepatitis C for determination of the activation of the interferon system in these viral diseases. In acute hepatitis A a strong expression (10 of 10 patients) of the MxA protein and the 2',5'-oligoadenylate synthetase activity in peripheral-blood mononuclear cells was observed during the first 2 wk after onset of clinical symptoms. In this period the MxA protein concentrations reached levels similar to those measured in patients treated with up to 5 x 10(6) IU interferon-alpha three times a week. Beyond wk 3, in eight of eight patients with hepatitis A no increased MxA protein levels were found. In contrast, peripheral-blood mononuclear cells from patients with acute hepatitis B contained either no measurable MxA protein or only slightly higher levels of the MxA protein, as did those of most patients (12 of 14) with acute hepatitis C. The MxA protein levels of both hepatitis B and C patients were significantly lower (p < 0.05) than those found in hepatitis A patients. Furthermore, sera from 6 of 10 patients with hepatitis A, but none of 10 patients with acute hepatitis B and C, contained measurable MxA protein. This serum MxA protein may originate from interferon-exposed and subsequently damaged liver cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号