首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure and solidification behavior of Cu–Ni–Si alloys with four different Cu contents was studied systematically under near-equilibrium solidification conditions. The microstructures of these Cu–Ni–Si alloys were characterized by SEM and the phase composition was identified by XRD analysis. The phase transition during the solidification process was studied by DTA under an Ar atmosphere. The results show that the microstructure and solidification behavior is closely related to the composition of Cu–Ni–Si alloys. The microstructure of Cu–Ni–Si alloys with higher than 40% Cu content consists of primary phase α-Cu(Ni, Si) and eutectic phase (β1-Ni3Si + α-Cu(Ni,Si).When the Cu content is about 40%, only the eutectic phase (β1-Ni3Si + α-Cu(Ni,Si)) is present. DTA analysis shows there are three phase transitions during every cooling cycle of alloys with higher than 40% Cu content, but only one for 40% Cu content. Cu–Ni–Si alloy with 40% Cu solidifies by a eutectic reaction, but Cu–Ni–Si alloys with higher than 40% Cu content solidify as a hypoeutectic reaction.  相似文献   

2.
The microstructure and mechanical properties of Sn–xBi (x = 10, 20, 25, and 35) solder alloy were investigated by scanning electronic microscope and notch tensile test. The results showed that the microstructure of Sn–10Bi and Sn–20Bi solder alloy was constituted by Bi particle and β-Sn phase. The microstructure of Sn–25Bi and Sn–35Bi solder alloy was consisted of eutectic phase and primary phase. The ultimate tensile load of Sn–20Bi solder alloy was higher than that of Sn–10Bi in notch tensile test. The ultimate tensile load of Sn–25Bi and Sn–35Bi was declined gradually compared with that of Sn–20Bi solder alloy. The fracture energy of Sn–xBi was decreased continuously when the Bi fraction increased. Crack observation, fracture surface observation, and finite element analysis revealed that the crack initiation and propagation of Sn–25Bi and Sn–35Bi was dominated by the fracture of brittle eutectic phase. Therefore, the ultimate tensile load and fracture energy of Sn–25Bi and Sn–35Bi were damaged compared with that of Sn–20Bi.  相似文献   

3.
This work was focused on the influence of Ga on the thermal properties, microstructural evolution and interfacial morphology with aging treatment at 150 °C of low-silver Sn–0.5Ag–0.7Cu (SAC) lead-free solder. The melting temperature of the SAC–Ga solder was decreased owing to the low melting point element Ga and the formations of intermetallic compound (IMC) and growth at the interfaces of SAC/Cu and SAC–0.5Ga/Cu were studied for different aging time ranging from 0 to 720 h. The results indicated that for both solders, the thickness of the IMC increased with aging time prolonging. However, compared with the interface of SAC/Cu, the thickness of the interface of SAC–Ga/Cu was obviously suppressed and the growing speed was slowed down, which may be attributed to the decreased activity of copper atoms by Ga addition, so that the SAC–Ga solder showed relatively planar-like IMC instead of scallop-like at the interface.  相似文献   

4.
In situ nitridation during laser deposition of titanium–molybdenum alloys from elemental powder blends has been achieved by introducing the reactive nitrogen gas during the deposition process. Thus, Ti–Mo–N alloys have been deposited using the laser engineered net shaping (LENSTM) process and resulted in the formation of a hard α(Ti,N) phase, exhibiting a dendritic morphology, distributed within a β(Ti–Mo) matrix with fine scale transformed α precipitates. Varying the composition of the Ar + N2 gas employed during laser deposition permits a systematic increase in the nitrogen content of the as-deposited Ti–Mo–N alloy. Interestingly, the addition of nitrogen, which stabilizes the α phase in Ti, changes the solidification pathway and the consequent sequence of phase evolution in these alloys. The nitrogen-enriched hcp α(Ti,N) phase has higher c/a ratio, exhibits an equiaxed morphology, and tends to form in clusters separated by ribs of the Mo-rich β phase. The Ti–Mo–N alloys also exhibit a substantial enhancement in microhardness due to the formation of this α(Ti,N) phase, combining it with the desirable properties of the β-Ti matrix, such as excellent ductility, toughness, and formability.  相似文献   

5.
The heterogeneous microstructure of solder could be obtained when cooling rate of the solder joint was not even, which would affect the corrosion behavior of solder during service. The ambient temperature would also affect the corrosion behavior of solder joint. In this paper, the effects of microstructure and temperature on the corrosion behavior of Sn–3.0Ag–0.5Cu (SAC305) lead-free solder were investigated. The various microstructures of SAC305 lead-free solder were obtained by cooling specimens in air and furnace. Compared to the fine-fibrous Ag3Sn phase inside the commercial SAC305 solder, platelet-like Ag3Sn formed as cooling speed decreasing. The polarization behavior of SAC305 solders in 3.5 wt.% NaCl solution was not significantly affected by various microstructures, but sensitive to temperature.  相似文献   

6.
The influence of TiO2 nanoparticles on the growth of intermetallic compound (IMC) between Sn–3.0 wt% Ag–0.5 wt% Cu–x wt% TiO2 (x = 0, 0.02, 0.05, 0.1, 0.3, and 0.6) composite solder and the Cu substrate during isothermal aging process at temperatures of 120, 150, and 190 °C has been investigated in this study. Scanning electron microscopy was used to observe the microstructural evolution of the solder joints and measure the thickness of IMC layer. The IMC phases were identified by energy-dispersive X-ray spectroscopy and X-ray diffractometry. Results show that two intermetallic layers, Cu6Sn5 and Cu3Sn phase are formed at the interface and the morphology of the Cu6Sn5 phase transforms from scallop-type to layer-type in Sn–3.0Ag–0.5Cu–xTiO2 solder joints. The addition of nano-TiO2 has a strong influence on the growth of overall IMC layers, and the thickness of overall IMC layers rapidly increase with aging temperature and time. The growth rates and activation energies of the IMC growth of six solder alloys were determined. Results reveal that, for three different ageing temperatures, the growth rates of overall IMC layers decrease with an increase in nano-TiO2 proportion. The activation energies for the growth of overall IMC layers range from 48.34 to 63.61 kJ/mol. Adding nano-TiO2 to Sn–3.0Ag–0.5Cu solder could evidently increase the activation energy of overall IMC layers, reduce the atomic interdiffusion rate, and thus inhibit excessive growth of overall IMC layers.  相似文献   

7.
This study investigated the liquid state reaction of a Sn–3.0Ag–0.5Cu solder jointed with electroless Ni–P/immersion Au (ENIG) and electroless Ni–P/electroless Pd/immersion Au (ENEPIG) surface finishes. Treatments with various soldering temperatures (240, 250, and 260 °C) and times (60, 180, 300, and 600 s) were performed to study the microstructure evolution. Detailed interfacial images revealed that the morphology of (Cu,Ni)6Sn5 affects the formation of Ni3P and the curvature of the interface between them. In addition, the growth kinetics of (Cu,Ni)6Sn5 and (Cu,Ni,Pd)6Sn5 were studied and compared. The effect of grain coarsening during extended reflow modified the diffusion transport mechanism. However, because of the refinement of Pd on the grain structure, reduced IMC growth and a lower degree of transition from grain boundary diffusion to volume diffusion could be observed in the growth kinetics of (Cu,Ni,Pd)6Sn5. Moreover, the activation energy of IMC growth was evaluated using the Arrhenius equation. Pd may act as heterogeneous nucleation sites in the initial stage of soldering and lower the activation energy of (Cu,Ni,Pd)6Sn5, compared to (Cu,Ni)6Sn5. The lower activation energy of (Cu,Ni,Pd)6Sn5 growth ensured that no phase transformation occurred in the SAC305/ENEPIG joints, which may benefit the solder joint reliability. Finally, the detailed influence of Pd on the growth kinetics of IMC formation was investigated and discussed.  相似文献   

8.
Sn–Ag–Cu based solder alloys are replacing Sn–Pb solders in electronic packaging structures of commercial electric devices. In order to evaluate the structural reliability, the mechanical property of solder material is critical to the numerical simulations. Annealing process has been found to stabilize material properties of Sn–37Pb solder material. In the current study, the annealing effect on tensile behaviour of Sn–3.0Ag–0.5Cu (SAC305) solder material is investigated and compared with Sn–37Pb solder. It is found that the tensile strength for both materials are more stabilized and consistent after the annealing process, nevertheless, the annealing process will improve the plasticity of SAC305 solder dominated by dislocation motion, and impede the occurrence of hardening deformation in Sn–37Pb solder dominated by grain-boundary sliding mechanism. Furthermore, the annealing effect is quantified in the proposed constitutive model based on unified creep–plasticity theory. The parameters are calibrated against the measured stress–strain relationships at the tensile strain rates ranging from 1?×?10?4 to 1?×?10?3 s?1. The numerical regressions for dominant parameters in the proposed model reveal the intrinsic differences between SAC305 and Sn–37Pb solders under annealing treatment.  相似文献   

9.
Yuan  Zeyu  He  Yujie  Wu  Ruize  Xu  Ming  Zhang  Jun  Zhu  Yunqing  Wang  Qiaoli  Xie  Weibin  Chen  Huiming 《Journal of Materials Science: Materials in Electronics》2022,33(26):20769-20777
Journal of Materials Science: Materials in Electronics - To further improve the performance of the Sn–3.5Ag–0.5Cu solder, trace amount of rare earth Tb was added. The wettability, shear...  相似文献   

10.
In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of multicomponent solder with excessive Cu and Ni compositions. In this study, the tensile creep behavior of Sn–3.5Ag–2.0Cu–0.5Ni multicomponent lead-free solder alloy is investigated at three temperatures, i.e., 303, 348 and 393 K. The steady-rate creep rates are obtained in the range of 10?4–10?8 s?1, when the normalized stress, σ/E, is in the range of 10?4–10?3. Based on the Dorn equation, the apparent stress exponent (n a), threshold stress (σ th), and activation energy of creep (Q C) are calculated at the three temperatures. It is found that the Sn–3.5Ag–2.0Cu–0.5Ni solder alloy shows a better creep performance than pure tin and eutectic Sn–3.5Ag solder due to the strengthening effect of Ag3Sn and (Cu,Ni)6Sn5 IMC precipitations. The true stress exponent for creep is identified to be 7, indicating that the creep behave is controlled by the dislocation-pipe diffusion in the tin matrix.  相似文献   

11.
In this paper, the effects of microstructure on the corrosion behavior of Sn–3.0Ag–0.5Cu (SAC305) lead-free solder were investigated by potentiodynamic polarization and atmospheric corrosion test. Scanning electron microscopy and X-ray diffraction were used to characterize the samples after the electrochemical and atmospheric corrosion tests. Results showed that commercial SAC305 solder exhibits better corrosion resistance than air-cooled and furnace-cooled SAC305 solders both in 3.5 wt% NaCl solution and at 60 °C/100 % relative humidity condition.  相似文献   

12.
Effect of current stressing on whisker growth in Cu/Sn–58Bi/Cu solder joints was investigated with current densities of 5 × 103 and 104 A/cm2 in oven at different temperatures. Two types of whiskers, columnar-type and filament-type, were observed on the solder film propagating along the surface of the Cu substrate and at the cathode interface, respectively, accompanied with many hillocks formation. Typically, these whiskers were 5–15 μm in length and 0.06–2 μm in diameter. EDX revealed that these whiskers and hillocks were mixtures of Sn and Bi rather than single crystal. It should be noted that the sprouted whiskers would not grow any more even if the current-stressing time increased again when the solder joint was stressed under lower current density. Nevertheless, when the current density was up to 104 A/cm2, the whiskers would melt along with the increasing current-stressing time. Results indicated that the compressive stress generated by precipitation of Cu6Sn5 intermetallics provides a driving force for whisker growth on the solder film, and the Joule heating accumulation should be responsible for whisker growth at the cathode interface.  相似文献   

13.
Abstract

Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.  相似文献   

14.
Journal of Materials Science: Materials in Electronics - Electronics are becoming smaller and more versatile, and the size of solder joints has decreased to tens of microns, inducing obvious...  相似文献   

15.
The interfacial reactions of Sn/Cu–xZn (x = 15 and 30 at.%) solder joints were investigated. Before aging, [Cu6(Sn,Zn)5] and [Cu6(Sn,Zn)5/Cu–Zn–Sn] intermetallic compounds (IMCs) formed at the [Sn/Cu–15Zn] and [Sn/Cu–30Zn] interfaces, respectively. After thermal aging at 150 °C for 80 days, [Cu6(Sn,Zn)5/Cu3(Sn,Zn)/Cu(Zn,Sn)/CuZn] and [Cu6(Sn,Zn)5/Cu(Zn,Sn)/CuZn] IMCs, respectively, formed at the [Sn/Cu–15Zn] and [Sn/Cu–30Zn] interfaces. Increasing the amount of Zn in the Cu–Zn substrates evidently suppresses the growth of Cu3Sn and Kirkendall voids at the solder joint interfaces. Transmission electron microscopy images show the different microstructure of CuZn and Cu–Zn–Sn phases in Sn/Cu–Zn joints. These Cu–Zn phases act to inhibit the growth of Cu6Sn5 and Cu3Sn IMCs. As the content of Zn increased in Cu–Zn substrates, both CuZn and Cu(Zn,Sn) grew significantly. In addition, the growth of the Cu6(Sn,Zn)5/Cu3Sn IMCs approached a reaction-controlled process. The formation mechanisms of the CuZn and Cu(Zn,Sn) phases were probed and proposed with regard to the interfacial microstructure, elemental distribution, and the compositional variation at Sn/Cu–xZn interfaces.  相似文献   

16.
Polyhedral oligomeric silsesquioxanes (POSS) nano-particles reinforced Sn–3.0Ag–0.5Cu–xPOSS (x = 1, 3, 5) composite solders were prepared and were reflowed on Cu substrates at 543 K. Then, the solder joints were isothermal aged at 393 K for 24 and 48 h, respectively. Microstructural evolution of the solder joints were observed by scanning electron microscopy and the influence of POSS nano-particles on the solder joint were investigated. The results showed that β-Sn primary phase was refined and the number of grain boundary increased with the addition of POSS nano-particles. The growth rates of intermetallic compounds (IMCs) layer were suppressed by the adsorption affection of POSS nano-particles to the IMCs layer during isothermal aging. Moreover, the dissolution process of the IMCs layer, which was accompanied by with the growth of the IMCs layer, changed the morphology of the IMCs layer. The growth rate and the dissolution rate of the IMCs layer in Sn–3.0Ag–0.5Cu–3POSS/Cu composite solder joint were the lowest.  相似文献   

17.
This review represents the state of the art in the thermophysical properties of liquid Ag–Sn alloys highlighting the surface and wetting properties of Ag–Sn eutectic solder. It includes an atomistic approach developed within the framework of statistical mechanical theory in conjunction with a Quasi Lattice Theory that, through a rigorous mathematical formalism, provides exact relationships between the properties in terms of classical thermodynamics. The model predicted property values are substantiated by available experimental data. Based on the phase diagram evidence about the existence of ε-Ag3Sn intermetallic compound, the surface (surface tension and surface composition), transport (viscosity and diffusivity) properties and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) have been studied using the Compound Formation Model in a weak interaction approximation and Quasi Chemical Approximation for regular solutions. A case study of Ag–Sn eutectic alloy is presented. Taking into account its importance for design and development of lead free solder alternatives, the literature data on the wettability and the phases formed at the interface between Ag–Sn eutectic alloy and different substrates (Cu, Ni, Au, Pd) have also been analysed.  相似文献   

18.
Polarized light microscopy and electron backscatter diffraction have been used to quantify the number of β-Sn grains and to examine the Sn crystallographic orientation in Sn–Ag–Cu/Cu solder joints, respectively. The effect of solder joint size on the Sn grain features was investigated due to the miniaturization of solder joints. The Sn–Ag–Cu solder joints of different sizes were found to contain only several β-Sn crystal grains and most solder joints were comprised of no more than three Sn grains. The solder joints showed a preferred crystal orientation. The c crystal axis of β-Sn grains tended to be at a small angle with solder pads. Specific orientation relationships were observed to be prevalent between neighboring β-Sn grains. The grain number, crystal orientation and misorientation were independent of solder joint size.  相似文献   

19.
In this study, Ni-coated carbon nanotubes (Ni-CNTs) were incorporated into the 95.8Sn-3.5Ag-0.7Cu solder alloy using the powder metallurgy route. Up to 0.3 wt% of Ni-CNTs were successfully incorporated. The effects of Ni-CNTs on the physical, thermal and mechanical properties of Sn–Ag–Cu solder alloy were investigated. With the addition of increasing weight percentages of Ni-CNTs, the composite solders showed a corresponding decrease in density values and improved wetting properties. The thermomechanical property results showed an improvement in thermal stability for the composite solders. Mechanical characterization revealed an improvement in ultimate tensile strength (up to 12%) and 0.2% yield strength (up to 8%) with the addition of 0.05 wt% Ni-CNTs in the solder.  相似文献   

20.
In wave soldering Sn-Cu alloy was recommended as a promising substitute of traditional Sn–Pb alloy. Here a rapid directional solidification process was firstly adopted to prepare directionally-solidified hypereutectic Sn–Cu composites. The corresponding microstructure exhibits regular lamellar structures with alterative Sn-rich phase and intermetallic compounds. The large kinetic undercooling arising from the rapid solidification condition is the inherent mechanism to obtain directionally-solidified lamellar structures for the hypereutectic Sn–Cu solder. Additionally, the measured compressive mechanical properties of the directionally solidified solder exhibit anisotropic characteristics, that is, the compressive strength along the longitudinal direction is 1.63 times higher than that along the transverse direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号