首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
The effect of BaCu(B2O5) (BCB) on the sinterability, microstructure and microwave dielectric properties of Ba4Sm9.33Ti18O54 (BST) has been investigated. Dilatometric measurements reveal that the sintering temperature of BST can be reduced by the addition of BCB. Microstructural analysis shows abnormal grain growth with large amount of BCB. A ceramic composite with Q × f = 4000 GHz, ?r = 52 and τf = ?29 ppm/°C which can be sintered at 950 °C is obtained when 10 wt% BCB is added to BST. EDS analysis shows that the composite is chemically compatible with silver.  相似文献   

2.
3.
PbTiO3+Bi2Ti2O7掺杂的Ba4.5Nd9Ti18O54微波介质陶瓷   总被引:4,自引:0,他引:4  
研究了PbTiO3 Bi2Ti2O7掺杂的Ba4.5Nd9Ti18O54微波介质陶瓷材料的结构和介电性能.结果表明,随着掺杂量的增加,陶瓷材料的密度呈现出轻微下降的趋势,介电常数则保持较高的数值,Q值及τf随掺杂量的增加而下降.当PbTiO3 Bi2Ti2O7掺杂量为20%时,材料的εr≈93,Q.f≈5800 GHz,τf≈3×10-5/℃.XRD分析表明,当PbTiO3 Bi2Ti2O7掺杂量小于24%时,Ba4.5Nd9Ti18O54材料仍呈现出单相结构.利用电介质极化理论初步解释了材料介电性能变化的原因.  相似文献   

4.
5.
The microwave dielectric properties of Nd(1?x)Smx(Mg0.5Sn0.5)O3 ceramics were examined with a view to their exploitation in mobile communication. The Nd(1?x)Smx(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd0.98Sm0.02(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. A density of 6.87 g/cm3, a dielectric constant (ε r ) of 19.2, a quality factor (Q × f) of 104,300 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?57 ppm/°C were obtained for Nd0.98Sm0.02(Mg0.5Sn0.5)O3 ceramics that were sintered at 1,550 °C for 4 h.  相似文献   

6.
《Materials Research Bulletin》2006,41(7):1385-1391
CaTi1−x(Fe0.5Nb0.5)xO3 (0  x  1) dielectrics were synthesized via the solid state reaction route and structure analysis was performed together with the dielectric characterization. The substitution of Ti4+ by Fe3+/Nb5+ and developed phase were studied by X-ray diffraction. The dielectric constant and temperature coefficient of resonant frequency decrease rapidly with an increase of x. The influence of 1–5 wt.% B2O3 as a sintering additive investigated at CaTi0.5(Fe0.5Nb0.5)0.5O3 solid solutions. The dielectric properties were found to strongly depend on the sintering conditions and contents of B2O3 additions. ɛr = 52.3, Q × fo = 2930 GHz and Tf = 13 ppm/°C were obtained for CaTi0.5(Fe0.5Nb0.5)0.5O3 specimen 3 wt.% B2O3 sintered at 900 °C for 2 h.  相似文献   

7.
The microwave dielectric properties of Nd(Mg0.5?xBaxSn0.5)O3 ceramics were examined with a view to their exploitation in mobile communication. The Nd(Mg0.5?xBaxSn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd(Mg0.47Ba0.03Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. A density of 6.91 g/cm3, a dielectric constant (ε r ) of 19.14, a quality factor (Q × f) of 97,500 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?65.4 ppm/°C were obtained for Nd(Mg0.47Ba0.03Sn0.5)O3 ceramics that were sintered at 1,600 °C for 4 h.  相似文献   

8.
Present work introduces a new kind of microwave dielectric ceramic, Ba4Ti3P2O15. Ba4Ti3P2O15 ceramic can be prepared by solid state reaction method and be well densified after being sintered at above 1175 °C for 4 h in air. All the XRD patterns can be fully indexed as single-phase structure. The best microwave dielectric properties can be obtained in ceramic sintered at 1200 °C for 4 h with permittivity about 20.7, Q × f about 42,210 GHz and TCF about 37 ppm °C?1. Measurements of the microwave dielectric properties of Ba4Ti3P2O15 ceramic revealed the existence of a maximum in the temperature dependence of the dielectric loss because of the defect dipoles relaxation.  相似文献   

9.
Low temperature sintering and dielectric properties of Ba2Ti3Nb4O18 ceramics with ZnO–B2O3–SiO2 (ZBS) frit and lithium salts addition were investigated for silver co-sintering application. The sintering temperature of dense Ba2Ti3Nb4O18 ceramics with ZBS frit or LiNO3 addition was effectively lowered to 950 or 1,000 °C, respectively. LiNO3 is found to be more efficient than LiF or Li2CO3 to lower the sintering temperature of Ba2Ti3Nb4O18 ceramics. The sintering temperature of 900 °C was obtained for the Ba2Ti3Nb4O18 ceramics with a combination of ZBS frit and LiNO3 addition. The dielectric properties of Ba2Ti3Nb4O18 ceramics with 1 wt.% ZBS and 0.5 wt.% LiNO3 sintered at 900 °C are as follows: εr ~ 37.8, tan δ ~ 0.0003, τε ~ 4.6 ppm/°C.  相似文献   

10.
The microwave dielectric properties of Nd(1?2x/3)Cax(Mg0.5Sn0.5)O3 ceramics were examined to evaluate their exploitation for mobile communication. Nd(1?2x/3)Cax(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd2.9/3Ca0.05(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with the sintering temperature. Nd2.9/3Ca0.05(Mg0.5Sn0.5)O3 ceramics that were sintered at 1,550 °C for 4 h had the following properties: a density of 6.86 g/cm3, a dielectric constant (εr) of 19.3, a quality factor (Q × f) of 99,000 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?65 ppm/°C.  相似文献   

11.
《Materials Research Bulletin》2006,41(10):1972-1978
The effect of V2O5 addition on the microwave dielectric properties and the microstructures of 0.4SrTiO3–0.6La(Mg0.5Ti0.5)O3 ceramics sintered for 5 h at different sintering temperature were investigated systematically. It was found that the sintering temperature was effectively lowered about 200 °C by increasing V2O5 addition content. The grain sizes, bulk density as well as microwave dielectric properties were greatly dependent on sintering temperature and V2O5 content. The 4ST–6LMT ceramics with 0.25% V2O5 sintered at 1400 °C for 5 h in air exhibited optimum microwave dielectric properties of ɛr = 50.7, Q × f = 15049.6 GHz, Tf = −1.7 ppm/°C.  相似文献   

12.
This study elucidates the microwave dielectric properties and microstructures of Nd(Mg0.5?xNixSn0.5)O3 ceramics with a view to their potential for microwave devices. The Nd(Mg0.5?xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the Nd(Mg0.43Ni0.07Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. A dielectric constant ( $ \varepsilon_{r} $ ) of 19.3 and a quality factor (Q × f) of 93,400 GHz and a temperature coefficient of resonant frequency ( $ \tau_{f} $ ) of ?66 ppm/ °C were obtained for Nd(Mg0.43Ni0.07Sn0.5)O3 ceramics that were sintered at 1,550 °C for 4 h.  相似文献   

13.
Modification of promising tungsten bronze-type dielectric ceramic Ba4Sm2Ti4Ta6O30 has been investigated by adjusting the composition in Ba4-3xSm2+2xTi4Ta6O30. The temperature coefficient of dielectric constant has been significantly improved by such modification together with the suppressed dielectric loss, but the dielectric constant decreased significantly. © 2000 Kluwer Academic Publishers  相似文献   

14.
15.
The effect of Al2O3-doped silica glass (AS-glass) addition on the structure and dielectric properties of the BaO–Nd2O3–Sm2O3–TiO2 (BNST) microwave materials was investigated. This BNST material has a dielectric constant (k) of 80 and a quality factor (Q×f) of 6000 GHz when sintered at 1350 °C for 2 h. Both the microstructure and the microwave dielectric characteristics were determined as a function of the sintering temperature and glass content. A Q×f as high as 8700 GHz was achieved in ceramics added with 20 wt % glass, however, the k value drops to 30. The high Q×f value is attributed to the improved densification of the dielectric when glass is added. Results of X-ray diffraction experiments indicate that glass addition enhances the growth in the longitudinal direction of the columnar crystal and a preferred (0 0 2) orientation. The presence of columnar structure plays an important role in the improvement of the microwave dielectric properties.  相似文献   

16.
Dielectric ceramic compositions for microwave applications belonging to the (BaO) (Sm2O3) (TiO2) ternary phase diagram were studied. Calcination, sintering, microwave properties and influence of secondary phases were investigated. By varying composition and/or sintering process, a high dielectric constant with low dielectric losses and modulable negative or positive temperature coefficient of the resonant frequency can be reach.  相似文献   

17.
《Materials Research Bulletin》2006,41(6):1127-1132
Microwave dielectric ceramics of tungsten–bronze-type BaSm2Ti4O12 were prepared by doping CuO (up to 2 wt.%) as the liquid-phase sintering aid. The effects of CuO additive on the densification, micro structure and dielectric properties were investigated. Due to the liquid-phase effect, the sintering temperature of BaSm2Ti4O12 ceramics with 1 wt.% CuO addition can be effectively reduced to 1160 °C, about 200 °C lower than that of pure BaSm2Ti4O12 ceramics, while good microwave dielectric properties of ɛr = 75.8, Q*f = 4914.6 GHz and τf = −7.65 ppm/°C were still achieved.  相似文献   

18.
Effects of MnCO3–CuO (for short MC) additives on densification and dielectric properties of Ba3Ti4Nb4O21 ceramics have been investigated. The densification temperature of Ba3Ti4Nb4O21 is greatly reduced from 1280 °C for pure Ba3Ti4Nb4O21 to 950 °C with the presence of MC. This is caused by the liquid phase sintering taking place between MC and Ba3Ti4Nb4O21 during sintering. The dielectric constant and the quality factor decrease with increasing MC additives. At a given amount of sintering additive, the dielectric constant and the quality factor decrease with increasing Mn content in the MC mixture. The Ba3Ti4Nb4O21 ceramics with 1 wt% 0.2MnCO3–0.8CuO sintered at 950 °C for 2 h shows dielectric properties: ε = 66,  ×  f = 13,400 GHz and τ f  = 60 ppm/°C. Also, the material is compatible with Ag electrodes and, therefore, is suitable for LTCC application.  相似文献   

19.
New low sintering temperature and temperature-stable low-loss ceramics based on Li2TiO3 with lithium zinc borate (LZB) glass and LiZnNbO4 doping have been prepared by the conventional solid-state reaction route. The effect of LZB glass addition on the sinterability, phase purity, microstructure, and microwave dielectric properties of Li2TiO3 ceramics has been investigated. The XRD results suggest the presence of single Li2TiO3 phases for LZB glass-added Li2TiO3 ceramics. The addition of LZB glass can effectively lower the sintering temperature to 900 °C, and does not induce much degradation of the microwave dielectric properties. Typically, the 2.0 wt% LZB glass-added ceramic sintered at 900 °C has better microwave dielectric properties of εr = 23.2, Q × f = 38,909 GHz, and τ f  = 30.1 ppm/°C. Meanwhile, LiZnNbO4 compound is selected to tune the temperature coefficient of resonant frequency (τ f ) to near zero. It is found that the 2.0 wt% LZB glass-added Li2TiO3 ceramics with 35 wt% LiZnNbO4 sintered at 925 °C have good microwave dielectric properties of εr = 20.7, Q × f = 19,366 GHz, τ f  = ?0.5 ppm/°C, which can find applications in microwave devices that require low sintering temperature.  相似文献   

20.
Modification of dielectric properties for Ba4Nd2Ti4Ta6O30 ceramic was investigated through Bi partial substitution for Nd. The dielectric constant increased and the dielectric loss decreased with increasing concentration of Bi, and the dielectric constant reached 142, combined with a low dielectric loss of 10–4 (at 1 MHz) for the composition Ba4(Nd0.975Bi0.025)2Ti4Ta6O30. The temperature coefficient () can be slightly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号