首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline indium tin oxide (ITO) film containing 5 wt% Sn was prepared on glass substrate by the spray pyrolysis technique at a substrate temperature of 500 °C. In order to enhance the photosensitivity of ITO, thiourea (CS(NH2)2 was added to the precursor to obtain the [S]/[In] proportion of 0.1, 0.2, 0.4 and 0.6. The X-ray diffraction patterns showed that beside the bixbyite structure of ITO, the characteristic peaks corresponding to Sn2S3 appeared in XRD profiles recorded for the films with [S]/[In] = 0.1 and 0.2. In addition, sulfur additive caused a considerable decline in crystallinity quality. The optical properties of the films were studied using transmittance measurements in the wavelength range 300–1,000 nm. As a result, ITO and ITO-Sn2S3 thin films were prepared with resistivity of 3.06–3.7 × 10?4 Ω cm and a transmittance of 88–91 % at the wavelength of 550 nm. Moreover, the electrical resistances of ITO and ITO-Sn2S3 films as a function of time were measured in darkness and under illumination of light in the visible range. The photoresistance results revealed that the ITO-Sn2S3 film with [S]/[In] = 0.2 was efficiently sensitive to visible light for photoconductive sensor applications, besides being high conductive and transparent.  相似文献   

2.
《Vacuum》1991,42(14):911-914
The optical constants (the refractive index n and the absorption index k) of Sb2Se3 thin films deposited at room temperature on quartz have been calculated in the wavelength range (5000–2000 nm) using a transmission spectrum. Both n and k were found to be practically independent on either time, up to 6 months, or the film thickness in the range of 102–760 nm. Beyond the absorption edge, the absorption is due to allowed indirect and direct transitions with energy gaps of 1.225 and 1.91 eV, respectively. The value of the optical gap depends on the annealing temperature. X-ray analysis showed that the prepared films at room temperature had amorphous structure while the films annealed at 200°C for 1 h were verified to be crystalline.  相似文献   

3.
The formation of copper sulphide thin films on copper substrates has been studied. The method of preparation is based on a chemical bath deposition process during which a cathodic potential is applied to the substrate. The composition, optical and electrical characteristics have been measured and their variation with the applied potential is analysed. The film obtained when the appropriate potential value was applied to the substrate was confirmed by transmission electron diffraction (TED) studies to be chalcocite.  相似文献   

4.
This study applies the thermoelectric grains of Sb2Te3 on conductive glass to evaporate Sb2Te3 thin films by the electron beam evaporation method. Through experimental tests with different evaporation process parameters and film annealing conditions, thin films with better Seebeck coefficient, resistivity (p) and power fact (PF) can be obtained. Experimental results show that when thin films are annealed, their defects can be decreased accordingly, and carrier mobility can be enhanced to further elevate the conductivity of thin films. When the substrate temperature is set at 200 degrees C to fabricate Sb2Te3 thin films by the evaporation process and by annealing at 220 degrees C for 60 minutes, the Seebeck coefficient of Sb2Te3 thin films increase from 87.6 microV/K to 177.7 microV/K; resistivity falls from 6.21 m ohms-cm to 2.53 m ohms-cm and PF can achieve the maximum value of 1.24 10(-3) W/K2 m. Finally, this study attempts to add indium (In) to Sb2Te3 thin films. Indium has been successfully fabricated In3SbTe, thin films. This study also analyzes the effects of In on the thermoelectric properties of In3SbTe2 thin films.  相似文献   

5.
A new and low-cost chemical method is used to fabricate Cu2ZnSnS4 (CZTS) thin films by annealing Cu–Sn metallic inks with spin-coating ZnO layers under H2S. The obtained pure phase and smooth CZTS thin films are characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Further, the CZTS thin films are grown on n-type Si substrates to form proto-type CZTS/Si heterojunction solar cells that have photovoltaic properties, indicating the promising application of CZTS as the absorber layers in Si-based heterojunction solar cells.  相似文献   

6.
Of the I-III-VI2 group chalcopyrites, CuInSe2 has already proved its suitability for thin film solar cells owing to its excellent optical and transport properties. CuGaSe2 is expected to exhibit comparable properties from this point of view. With its band gap of 1.7 eV it is a candidate for use in photovoltaic tandem systems.

The preparation of CuGaSe2 thin films by means of the vacuum evaporation of the constituent elements (four-temperature method) is described. The structural, electrical and optical properties of these films were investigated. Secondary electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction examination and measurements of the optical transmission, resistivity and thermoelectric power were used to determine the film properties relative to the preparation parameters and stoichiometry. The growth conditions were optimized for solar cell applications. Heterojunctions were prepared by the in situ evaporation of ZnxCd1−xS onto the CuGaSe2 films. The characteristic data of the cells are a short-circuit current of 6 mA and an open-circuit voltage of 620 mV at an illumination at air mass 1.5 on an area of 1 cm2.  相似文献   


7.
8.
9.
Thin layers of cuprous sulphide were deposited by reactive r.f. sputtering; the target was pure copper and the sputtering gas was an ArH2S mixture. We describe here how the composition of the films and their stoichiometry can be derived accurately both from X-ray diffraction and the optical reflection and transmission spectra. Measurement of the electrical resistivity can be used as a quick qualitative identification method.The application of these characterization methods to our sputtered films indicates that the crucial parameters to be controlled are the total pressure of the sputtering gas and, in particular, the partial pressure of the H2S. Too low partial pressures of H2S result in the presence of copper precipitations in the Cu2S film, whereas too high H2S partial pressures result in the presence of copper-deficient CuxS phases; there is an intermediate range of H2S partial pressures in which pure chalcocite films (Cu2S) are obtained. When these films were sputtered onto evaporated CdS layers, we obtained Cu2S/CdS solar cells with a total area efficiency of above 4%.  相似文献   

10.
A study of the synthesized (Sb2Se3)2 (Sb2Te3)1 glassy system has been carried out, X-ray diffraction (XRD) patterns and differential thermal analysis (DTA) of the system studied were used to obtain an insight into the structural information. An investigation of the electrical and optical properties of (Sb2Se3)2 (Sb2Te3)1 thin films prepared by thermal evaporation having different thicknesses (89.2, 214, 223 nm) and annealing temperatures ranging from 300 to 473 K has been carried out. The effect of the thickness and heat treatment on the activation energy E for d.c. conductivity and the density of localized states at the Fermi level N(EF) were carried out. The electrical conductivity measurements depend on the thickness and annealing temperature, and exhibit two types of conduction mechanisms. Optical absorption measurements have been made on as-deposited and annealed films for the investigated system. The optical transition was found to be indirect. The optical energy gap (Eopt) decreases with increasing thickness and annealing temperatures (below Tg). The corresponding band is approximately twice the conduction activation energy. This effect is interpreted in terms of the density of states model proposed by Mott and Davis. © 2002 Kluwer Academic Publisher  相似文献   

11.
M. Sahal  B. Marí  M. Mollar 《Thin solid films》2009,517(7):2202-3360
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low-cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different composition solutions at various substrate temperatures. Structural, chemical composition and optical properties of CIS films were analysed by X-ray diffraction, energy dispersive X-ray spectroscopy and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the <112> direction and no remains of oxides were found after spraying in suitable conditions. X-ray microanalysis shows that a chemical composition near to stochiometry can be obtained. An optical gap of about 1.51 eV was found for sprayed CIS thin films.  相似文献   

12.
张伟  陈顺礼  汪渊 《功能材料》2012,43(5):630-634
利用射频(RF)磁控溅射在玻璃基片上共溅射沉积Cu-Sn预制膜。采用固态硒化法,制备Cu/Sn化学计量比在1.87~2.22之间的Cu2SnSe3薄膜。研究了Cu/Sn比率对Cu2SnSe3薄膜的晶体结构、微结构、光学性能以及电学性能的影响。X射线衍射(XRD)结果表明,所制备的Cu2SnSe3薄膜为立方晶体结构,具有(111)择优取向;贫铜的Cu2SnSe3薄膜光学带隙Eg随着Cu/Sn比率增大而增大;富铜的Cu2SnSe3薄膜光学带隙Eg随着Cu/Sn比率增大而不变。薄膜电阻率为1.67~4.62mΩ.cm。  相似文献   

13.
An electrodeposition method was used to prepare Cu 2S thin film deposited on Ti substrate. The effect of deposition potential, concentration and deposition time was studied to determine the optimum condition for the electrodeposition process. Cyclic voltammetry was performed to elucidate the electrodic processes that occur while potentials for electrodeposition were applied to determine the optimum potential for electrodeposition. The thin films were characterized by X-ray diffractometry. Scanning electron microscopy was performed to observe the morphology, composition and structure of the deposits. Cu 2S showed a cubic morphology.  相似文献   

14.
Polycrystalline titania and Nb:TiO2 thin films were deposited by RF magnetron sputtering. The influence of post-deposition annealing in vacuum and hydrogen atmosphere on the structure, morphology, oxidation states and optical properties was studied by X-ray diffraction, atomic force microscopy, XPS and UV–VIS spectroscopy. The heat treatment of titanium dioxide thin films in vacuum and H2 atmosphere induces structural and morphological changes. The band gap narrowing was observed for the transparent as-deposited Nb:TiO2 films, while annealing at 420 °C in H2 atmosphere resulted in an enhancement of the electrical conductivity. Further on, TiO2/p-CdTe photovoltaic devices with efficiency of 1.8% were fabricated and their characteristic ‘enhancement’ is discussed.  相似文献   

15.
李云  李健  王艳 《功能材料》2012,43(22):3180-3184
高纯Sn和S粉按1∶0.41%(质量分数)配比,均匀掺入9%(质量分数)的高纯Zn粉,单源共蒸发沉积薄膜后再进行热处理,得到Sn2S3∶Zn薄膜。XRD分析显示,380℃,55min热处理得到简单正交晶系的纯Sn2S3薄膜。掺Zn 9%(质量分数)的薄膜经370℃热处理15min得到的薄膜仍属简单正交晶系。掺Zn后Sn2S3薄膜的表面均匀和致密性变好,平均晶粒尺寸从未掺Zn时的35.69nm增加到58.80nm。Sn2S3薄膜的导电类型均为N型,掺Zn后薄膜的电阻率为60.5(Ω·cm),比未掺杂时降低1个数量级。Sn2S3薄膜的直接光学带隙为1.85eV,本征吸收边为551nm;Sn2S3∶Zn 9%(质量分数)薄膜的光学带隙1.41eV,本征吸收边873nm发生红移,Sn2S3薄膜的光吸收系数均达到105cm-1。  相似文献   

16.
The optical, electrical, photoelectric, and luminescent properties of CdS-In2S3 films prepared by spray pyrolysis were investigated. The films were found to consist of solid solutions and/or the compound CdIn2S4.  相似文献   

17.
Sb2S3-sensitized photoelectrochemical solar cells were prepared with photoactive electrodes containing thick and thin Sb2S3-sensitized layers, polyaniline hole conductor containing little amount of de-ionized water, and Pt counter electrodes. The device with the thin Sb2S3-sensitized layer shows much higher power conversion efficiency (3.78 %) than that of the device with the thick Sb2S3-sensitized layer (0.88 %). The FESEM and TEM images reveal that the device with the thin Sb2S3-sensitized layer is nanostructure, as that of the traditional quantum dot sensitized solar cell, while the device with the thick Sb2S3-sensitized layer is flat configuration. The photoactive electrode with the thin Sb2S3-sensitized layer shows higher light absorption, lower charge transfer resistance and longer electron lifetime compared with that of the one with the thick Sb2S3-sensitized layer, which results in higher photocurrent generation of the device.  相似文献   

18.
19.
20.
Thin film embodiments of MBa2Cu3O7-x (MBCO, M = yttrium or a rare-earth metal) prepared by several different deposition methods on a variety of substrates were investigated by Raman microspectroscopy. Several of the unique characterization capabilities of Raman spectroscopy in the analysis of MBCO thin films are highlighted by the results of these investigations. The Raman active phonons of the orthorhombic and tetragonal forms of MBCO that are most useful for characterization of textured MBCO films are diagrammed and discussed. A rapid procedure for qualitative texture mapping of MBCO thin films using Raman microscopy techniques is presented, and a new approach for investigating phase separation at the sub-micrometer level in MBCO thin films based on curve resolution of the MBCO Cu2 phonon is described. The assignment of a particular feature often observed in Raman spectra of MBCO films to cation disorder is reinforced by results of a cation substitution study. The depth of penetration of the laser into MBCO films and the type of information that can be obtained by varying the extent of defocusing of the laser are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号