首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.  相似文献   

2.
Srp1p, the protein encoded by SRP1 of the yeast Saccharomyces cerevisiae, is a yeast nuclear localization signal (NLS) receptor protein. We have previously reported isolation of a protein kinase from yeast extracts that phosphorylates Srp1p complexed with NLS peptides/proteins. From partial amino acid sequences of the four subunits of the purified kinase, we have now identified this protein kinase to be identical to yeast casein kinase II (CKII). It was previously thought that autophosphorylation of the 36 kDa subunit of the yeast enzyme was stimulated by the substrate, GST-Srp1p. However, with the use of a more refined system, no stimulation of autophosphorylation of the 36 kDa subunit of yeast CKII was observed. Biochemical and mutational analyses localized the in vitro phosphorylation site of Srp1p by CKII to serine 67. It was shown that, in the absence of NLS peptides/proteins, phosphorylation of the intact Srp1p protein is very weak, but deletion of the C-terminal end causes great stimulation of phosphorylation without NLS peptides/proteins. Thus, the CKII phosphorylation site is apparently masked in the intact protein structure by the presence of a C-terminal region, probably between amino acids 403 and 516. Binding of NLS peptides/proteins most likely causes a change in protein conformation, exposing the CKII phosphorylation site. Mutational alterations of serine 67, the CKII phosphorylation site, to valine (S67V) and aspartic acid (S67D) were not found to cause any significant deleterious effects on cell growth. Analysis of in vivo phosphorylation showed that at least 30% of the wild type Srp1p molecules are phosphorylated in growing cells, and that the phosphorylation is mostly at the serine 67 CKII site. The ability of Srp1p purified from E coli and treated with calf intestinal phosphatase to bind a SV40 T-antigen NLS peptide was compared with that of Srp1p which was almost fully phosphorylated by CKII. No significant difference was observed. It appears that NLS binding does not require any phosphorylation of Srp1p, either by CKII or by some other protein kinase.  相似文献   

3.
A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.  相似文献   

4.
The 3F3/2 antibody recognizes a phosphoepitope that is implicated in the mitotic checkpoint regulating the metaphase-to-anaphase transition. Immunoprecipitation and Western blotting revealed that the 3F3/2 antibody binds to human DNA topoisomerase II alpha (HsTIIalpha) from mitotic but not interphase HeLa cells. Extracts from mitotic cells efficiently catalyzed the formation of the 3F3/2 phosphoepitope on fragments of HsTIIalpha expressed in bacteria. Expression and site-directed mutagenesis of various HsTIIalpha protein fragments mapped the 3F3/2 phosphoepitope to the region of HsTIIalpha containing phosphorylated threonine 1342. This threonine lies within a consensus sequence for phosphorylation by casein kinase II (CKII). CKII is present in cellular extracts and is associated with isolated mitotic chromosomes. The 3F3/2 phosphoepitope kinase present in mitotic cell extracts was able to create the epitope using GTP and was inhibited by heparin. A kinase associated with the isolated chromosomes also generated the 3F3/2 phosphoepitope on HsTIIalpha. Recombinant CKII catalyzed the formation of the 3F3/2 phosphoepitope on fragments of HsTIIalpha containing threonine 1342. These results indicate that the mitotic 3F3/2 phosphoepitope kinase activity is attributable to CKII. We suggest that the 3F3/2 phosphoepitope reflects a CKII-catalyzed phosphorylation of threonine 1342 that may regulate mitotic functions of HsTIIalpha.  相似文献   

5.
Factor Va, the essential cofactor for prothrombinase, is phosphorylated on the acidic COOH terminus of the heavy chain of the cofactor, at Ser692, by a platelet membrane-associated casein kinase II (CKII). Consistent with this observation, phosphorylation of the factor Va heavy chain by the platelet kinase was inhibited by heparin. The membrane-associated platelet CKII kinase was partially purified using heparin-agarose, phosphocellulose, and ion exchange chromatography. CKII antigen was monitored using a polyclonal antibody to the alpha-subunit, and kinase activity in the various fractions was confirmed using human factor Va as a substrate. Immunoblotting experiments using polyclonal antibodies raised against synthetic peptides mimicking a portion of the deduced amino acid sequence of the alpha-, alpha'-, and beta-subunits of human CKII demonstrated the coexistence of both alpha- and alpha'-subunits in platelets and suggested that the platelet CKII kinase may exist in part as an alpha alpha'beta2 complex. It is also possible that there are two distinct populations of CKII in platelets, one that is alphaalpha/betabeta and one that is alpha'alpha'/betabeta. In the presence of the purified platelet-derived CKII, human factor Va incorporates between 0.8 and 1.3 mol of phosphate/mol of factor Va depending on the concentration of the beta-subunit in the kinase preparation. A peptide mimicking the sequence 687-705 of the human factor V molecule incorporates radioactivity in the presence of purified CKII and inhibits factor Va heavy chain phosphorylation by the platelet CKII. In contrast, a peptide with an alanine instead of a serine at position 692 neither incorporates phosphate nor inhibits factor Va phosphorylation by the platelet CKII. Human factor Va is inactivated by activated protein C following three cleavages of the heavy chain at Arg506, Arg306, and Arg679. Cleavage at Arg506 is necessary for efficient exposure of the inactivating cleavage site at Arg306. The phosphorylated cofactor has increased susceptibility to inactivation by activated protein C, since phosphorylated factor Va was found to be inactivated approximately 3-fold faster than its native counterpart. Acceleration of the inactivation process of the phosphorylated cofactor occurs because of acceleration of the rate of cleavage at Arg506. These data suggest a critical role for factor Va phosphorylation on the surface of platelets in regulating cofactor activity.  相似文献   

6.
7.
8.
9.
In herpes simplex virus-infected cells, viral gamma134.5 protein blocks the shutoff of protein synthesis by activated protein kinase R (PKR) by directing the protein phosphatase 1alpha to dephosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). The amino acid sequence of the gamma134.5 protein which interacts with the phosphatase has high homology to a domain of the eukaryotic protein GADD34. A class of compensatory mutants characterized by a deletion which results in the juxtaposition of the alpha47 promoter next to US11, a gamma2 (late) gene in wild-type virus-infected cells, has been described. In cells infected with these mutants, protein synthesis continues even in the absence of the gamma134.5 gene. In these cells, PKR is activated but eIF-2alpha is not phosphorylated, and the phosphatase is not redirected to dephosphorylate eIF-2alpha. We report the following: (i) in cells infected with these mutants, US11 protein was made early in infection; (ii) US11 protein bound PKR and was phosphorylated; (iii) in in vitro assays, US11 blocked the phosphorylation of eIF-2alpha by PKR activated by poly(I-C); and (iv) US11 was more effective if present in the reaction mixture during the activation of PKR than if added after PKR had been activated by poly(I-C). We conclude the following: (i) in cells infected with the compensatory mutants, US11 made early in infection binds to PKR and precludes the phosphorylation of eIF-2alpha, whereas US11 driven by its natural promoter and expressed late in infection is ineffective; and (ii) activation of PKR by double-stranded RNA is a common impediment countered by most viruses by different mechanisms. The gamma134.5 gene is not highly conserved among herpesviruses. A likely scenario is that acquisition by a progenitor of herpes simplex virus of a portion of the cellular GADD34 gene resulted in a more potent and reliable means of curbing the effects of activated PKR. US11 was retained as a gamma2 gene because, like many viral proteins, it has multiple functions.  相似文献   

10.
Ribonucleotide reductase is a rate-limiting enzyme in DNA synthesis and is composed of two different proteins, R1 and R2. The R2 protein appears to be rate-limiting for enzyme activity in proliferating cells, and it is phosphorylated by p34cdc2 and CDK2, mediators of cell cycle transition events. A sequence in the R2 protein at serine-20 matches a consensus sequence for p34cdc2 and CDK2 kinases. We tested the hypothesis that the serine-20 residue was the major p34cdc2 kinase site of phosphorylation. Three peptides were synthesized (from Asp-13 to Ala-28) that contained either the wild type amino acid sequence (Asp-Gln-Gln-Gln-Leu-Gln-Leu-Ser-Pro-Leu-Lys-Arg-Leu-Thr-Leu-Ala, serine peptide) or a mutation, in which the serine residue was replaced with an alanine residue (alanine peptide) or a threonine residue (threonine peptide). Only the serine peptide and threonine peptide were phosphorylated by p34cdc2 kinase. In two-dimensional phosphopeptide mapping experiments of serine peptide and Asp-N endoproteinase digested R2 protein, peptide co-migration patterns suggested that the synthetic phosphopeptide containing serine-20 was identical to the major Asp-N digested R2 phosphopeptide. To further test the hypothesis that serine-20 is the primary phosphorylated residue on R2 protein, three recombinant R2 proteins (R2-Thr, R2-Asp and R2-Ala) were generated by site-directed mutagenesis, in which the serine-20 residue was replaced with threonine, aspartic acid or alanine residues. Wild type R2 and threonine-substituted R2 proteins (R2-Thr) were phosphorylated by p34cdc2 kinase, whereas under the same experimental conditions, R2-Asp and R2-Ala phosphorylation was not detected. Furthermore, the phosphorylated amino acid residue in the R2-Thr protein was determined to be phosphothreonine. Therefore, by replacing a serine-20 residue with a threonine, the phosphorylated amino acid in R2 protein was changed to a phosphothreonine. In total, these results firmly establish that a major p34cdc2 phosphorylation site on the ribonucleotide reductase R2 protein occurs near the N-terminal end at serine-20, which is found within the sequence Ser-Pro-Leu-Lys-Arg-Leu. Comparison of ribonucleotide reductase activities between wild type and mutated forms of the R2 proteins suggested that mutation at serine-20 did not significantly affect enzyme activity.  相似文献   

11.
Cells respond to environmental stress and proinflammatory cytokines by stimulating the Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase cascades. Infection of eukaryotic cells with herpes simplex virus type 1 (HSV-1) resulted in stimulation of both JNK/SAPK and p38 mitogen-activated protein kinase after 3 h of infection, and activation reached a maximum of 4-fold by 9 h post-infection. By using a series of mutant viruses, we showed that the virion transactivator protein VP16 stimulates p38/JNK, whereas no immediate-early, early, or late viral expressed gene is involved. We identified the stress-activated protein kinase kinase 1 as an upstream activator of p38/JNK, and we demonstrated that activation of AP-1 binding proceeded p38/JNK stimulation. During infection, the activated AP-1 consisted mainly of JunB and JunD with a simultaneous decrease in the cellular levels of Jun protein. We suggest that activation of the stress pathways by HSV-1 infection either represents a cascade triggered by the virus to facilitate the lytic cycle or a defense mechanism of the host cell against virus invasion.  相似文献   

12.
The carboxyl-terminal domain of the gamma134.5 protein of the herpes simplex virus 1 binds to protein phosphatase 1alpha (PP1) and is required to prevent the shut-off of protein synthesis resulting from phosphorylation of the alpha subunit of eIF-2 by the double-stranded RNA-activated protein kinase. The corresponding domain of the conserved GADD34 protein homologous to gamma134.5 functionally substitutes for gamma134.5. This report shows that gamma134.5 and PP1 form a complex in the infected cells, that fractions containing this complex specifically dephosphorylate eIF-2alpha, and that both gamma134.5 and GADD34 proteins contain the amino acid sequence motif common to subunits of PP1 that is required for binding to the PP1 catalytic subunit. An oligopeptide containing this motif competes with gamma134.5 for binding to PP1. Substitution of Val193 and Phe195 in the PP1-binding motif abolished activity. These results suggest that the carboxyl-terminal domain of gamma134.5 protein has the structural and functional attributes of a subunit of PP1 specific for eIF-2alpha, that it has evolved to preclude shut-off of protein synthesis, and that GADD34 may have a similar function.  相似文献   

13.
14.
We have constructed a series of random N-terminal deletions of the large subunit (R1) of the herpes simplex virus type 1 ribonucleotide reductase. Deletions extended throughout the R1 gene open reading frame and, in total, 31 different truncated polypeptides were expressed in Escherichia coli using the T7 expression system. N-Terminal truncations were analyzed for their interaction with the small subunit (R2) of ribonucleotide reductase using a sensitive enzyme-linked immunosorbent assay (ELISA) method and for their ability to complement R2 in ribonucleotide reductase assays. Truncated proteins were also tested for homodimerization using gel-filtration chromatography. The results identified a region of R1 between amino acids 349 and 373 which was essential for subunit interaction. Proteins lacking up to 348 amino-terminal residues associated with R2 and complemented R2 in ribonucleotide reductase assays. Proteins commencing at amino acid 373 and beyond did not interact with R2 and were inactive in enzyme assays. Using a plasmid which expressed an N-terminal deleted protein commencing at amino acid 247, we constructed two defined C-terminal deletions to give proteins comprising amino acids 247-434 and 247-996 of R1. Neither of these truncated proteins bound R2 and we concluded that a second region between amino acids 996 and 1137 (the C-terminus) is required for interaction with R2. Gel-filtration studies indicated that deletion of the first 420 amino acids from R1 did not affect dimerization. However, deletions of 457 amino acids and larger gave proteins which existed as monomers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
An antibody made against the herpes simplex virus 1 US5 gene predicted to encode glycoprotein J was found to react strongly with two proteins, one with an apparent Mr of 23,000 and mapping in the S component and one with a herpes simplex virus protein with an apparent Mr of 43,000. The antibody also reacted with herpes simplex virus type 2 proteins forming several bands with apparent Mrs ranging from 43,000 to 50,000. Mapping studies based on intertypic recombinants, analyses of deletion mutants, and ultimately, reaction of the antibody with a chimeric protein expressed by in-frame fusion of the glutathione S-transferase gene to an open reading frame antisense to the gene encoding glycoprotein B led to the definitive identification of the new open reading frame, designated UL27.5. Sequence analyses indicate the conservation of a short amino acid sequence common to US5 and UL27.5. The coding sequence of the herpes simplex virus UL27.5 open reading frame is strongly homologous to the sequence encoding the carboxyl terminus of the herpes simplex virus 2 UL27.5 sequence. However, both open reading frames could encode proteins predicted to be significantly larger than the mature UL27.5 proteins accumulating in the infected cells, indicating that these are either processed posttranslationally or synthesized from alternate, nonmethionine-initiating codons. The UL27.5 gene expression is blocked by phosphonoacetate, indicating that it is a gamma2 gene. The product accumulated predominantly in the cytoplasm. UL27.5 is the third open reading frame found to map totally antisense to another gene and suggests that additional genes mapping antisense to known genes may exist.  相似文献   

16.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10DeltaPK). ICP10DeltaPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10DeltaPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10DeltaPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

17.
The herpes simplex virus type 1 tegument protein VP22 is known to be highly phosphorylated during infection. Here we show that two electrophoretic forms of VP22 can be identified in infected cell extracts and that this heterogeneity is accounted for by phosphorylation. Furthermore, the nonphosphorylated form of VP22 appears to be specifically incorporated into virions. We also show that the phosphorylated form of VP22 is the only form detected during transient transfection and as such that VP22 can act as a substrate for a cellular kinase. Phospho-amino acid and phospho-peptide analyses of in vivo labeled VP22 were utilized to demonstrate that the phosphorylation profiles of VP22 synthesized during transfection and infection are the same. In both cases VP22 was modified solely on serine residues located in the N-terminal 120 residues of the protein. Moreover, in vitro phosphorylation was utilized to show that the constitutive cellular kinase, casein kinase II, which has four serine consensus recognition sites at the N-terminus of VP22, phosphorylates VP22 in the same manner as observed in vivo. This kinase also phosphorylates VP22 at the N-terminus in intact capsid-tegument structures. Casein kinase II is therefore likely to be the major kinase of VP22 during infection.  相似文献   

18.
CD5 is a lymphocyte surface glycoprotein with a long cytoplasmic domain suitable for phosphorylation and signal transduction, which is involved in the modulation of Ag-specific receptor-mediated activation and differentiation signals. In this study, we use Jurkat T cell transfectants of CD5 cytoplasmic tail mutants to reveal phosphorylation sites relevant to signal transduction. Our results show that casein kinase II (CKII) is responsible for the constitutive phosphorylation of CD5 molecules at a cluster of three serine residues located at the extreme C terminus (S458, S459, and S461). Furthermore, the yeast two-hybrid system demonstrates the specific association between the C-terminal regions of the CD5 cytoplasmic tail and the regulatory beta subunit of CKII. We demonstrate that CKII associates with and phosphorylates the C-terminal region of CD5, a conserved domain known to be relevant for the generation of second lipid messengers, and thereby enables at least one component of its signaling function.  相似文献   

19.
The incidence of herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) in herpes simplex encephalitis (HSE) was investigated using cerebrospinal fluid (CSF) samples from sixty-four cases of HSE. A polymerase chain reaction (PCR) employing primers flanking a region of the HSV thymidine kinase gene common to both HSV-1 and HSV-2 was used to detect HSV in the CSF. HSV-1 and HSV-2 were differentiated by digestion with restriction enzymes. Two enzymes were employed; Aval which cleaved only the HSV-2 gene product and Avall which cleaved only the HSV-1 gene product. Sixty-three cases of HSE were found to be due to HSV-1; one case due to HSV-2. These data confirm previous observations that HSV-2 is a rare cause of post-neonatal herpes encephalitis but indicates that a PCR procedure capable of detection of both viruses is essential for efficient diagnosis of HSE.  相似文献   

20.
Varicella-zoster virus (VZV) glycoprotein gI is a type 1 transmembrane glycoprotein which is one component of the heterodimeric gE:gI Fc receptor complex. Like VZV gE, VZV gI was phosphorylated in both VZV-infected cells and gI-transfected cells. Preliminary studies demonstrated that a serine 343-proline 344 sequence located within the gI cytoplasmic tail was the most likely phosphorylation site. To determine which protein kinase catalyzed the gI phosphorylation event, we constructed a fusion protein, consisting of glutathione-S-transferase (GST) and the gI cytoplasmic tail, called GST-gI-wt. When this fusion protein was used as a substrate for gI phosphorylation in vitro, the results demonstrated that GST-gI-wt fusion protein was phosphorylated by a representative cyclin-dependent kinase (CDK) called P-TEFb, a homologue of CDK1 (cdc2). When serine 343 within the serine-proline phosphorylation site was replaced with an alanine residue, the level of phosphorylation of the gI fusion protein was greatly reduced. Subsequent experiments with individually immunoprecipitated mammalian CDKs revealed that the VZV gI fusion protein was phosphorylated best by CDK1, to a lesser degree by CDK2, and not at all by CDK6. Transient-transfection assays carried out in the presence of the specific CDK inhibitor roscovitine strongly supported the prior results by demonstrating a marked decrease in gI phosphorylation while gI protein expression was unaffected. Finally, the possibility that VZV gI contained a CDK phosphorylation site in its endodomain was of further interest because its partner, gE, contains a casein kinase II phosphorylation site in its endodomain; prior studies have established that CDK1 can phosphorylate casein kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号