首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pt/ZrO2 catalysts for the water–gas shift (WGS) were promoted with various amounts of vanadia. Analyses by XRD, N2 adsorption, Raman, and UV–vis DRS showed that vanadia is present below monolayer coverage as monovanadate and polyvanadate, with the former dominating at lower loadings, and that following monolayer formation, VO5 species appear, with the eventual generation of V2O5 and ZrV2O7 for a vanadia weight loading of 13%. Though in all cases vanadia induced an enhancement in WGS activity, the best catalyst, that contained 3 wt.% of vanadia, gave a rate that was nearly double that of the unpromoted Pt/ZrO2. That superior global activity probably results from the monovanadate that is the main species at low loadings. It is believed that monovanadate promotes the WGS by rendering the support's surface more oxidizing through its VOZr bonds.  相似文献   

2.
Mesoporous nanocrystalline anatase was prepared hydrothermally employing P123 as structure-directing agent. Ethylene glycol was used as a key synthesis parameter to fine tune the morphology, crystal size and pore size of the resultant mesophases. The incorporation of EG in the synthesis gel resulted in the formation of 1–2 μm sphere-like shapes and led to an increase in the specific surface area from 95 to 170 m2/g, decrease in the average pore size from 11 to 4.8 nm, and decrease in the average crystallite size from 17 to 12 nm. These mesophases were used as photocatalysts for the UV degradation of methylene blue and methyl orange. The mesoporous anatase phases photodegraded MB 1.5–3× faster than commercially available P25 and showed limited photocatalytic behavior for methyl orange.  相似文献   

3.
(K0.5−xLix)Na0.5(Nb1−ySby)O3 (KLNNSxy, x = 0–4 mol% and y = 0–8 mol%) lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The denser microstructure and better electrical properties of the ceramics were obtained as compared to the pure K0.5Na0.5NbO3 ceramic. The temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the KLNNS2.5–5 ceramic exhibits good electrical properties (kp  49%, k31  30% and , tan δ  0.019), and possesses good temperature stability in the temperature range of −40 to 85 °C. The related mechanisms for improved electrical properties and temperature stability were also discussed. Moreover, buzzers based on the KLNNS2.5–5 ceramic have been fabricated and their characterization is presented. These results show that the KLNNS2.5–5 ceramic is a promising lead-free material for practical application in buzzers.  相似文献   

4.
Nanoporous Co3O4 hierarchical nanoflowers have been prepared through sequential process of a hydrothermal reaction and heat treatment. These nanoflowers consisting of a great deal of Co3O4 nanofibers have bimodal pore structures and Brunauer–Emmett–Teller surface area of 34.61 m2/g. The temperature dependence curves of magnetization in zero-field-cooled and field-cooled exhibit main antiferromagnet and weak ferromagnet of Co3O4 nanoflowers at blocking temperature of 34 K, respectively. In addition, analysis of their optic properties obviously indicates red shift of absorption peaks, exhibiting quantum-confined effect and traits of semiconductor.  相似文献   

5.
We have studied the oxidation of carbon monoxide over a lanthanum substituted perovskite (La0.5Sr0.5CoO3−d) catalyst prepared by spray pyrolysis. Under the assumption of a first-order kinetics mechanism for CO, it has been found that the activation energy barrier of the reaction changes from 80 to 40 kJ mol−1 at a threshold temperature of ca. 320 °C. In situ XPS near-ambient pressure (0.2 torr) shows that the gas phase oxygen concentration over the sample decreases sharply at ca. 300 °C. These two observations suggest that the oxidation of CO undergoes a change of mechanism at temperatures higher than 300 °C.  相似文献   

6.
Lead zirconate titanate—Pb(Zr0.45Ti0.55)O3 thin films are grown on Pt1 1 1/Ti/SiO2/Si1 0 0 substrates by a sol–gel method with 1 0 0/0 0 1 and 1 1 1 preferred orientations. Film orientation was controlled mainly by the annealing process and temperature. Films with 1 0 0/0 0 1 orientation consist of a uniform microstructure with micron size grains, whereas films with 1 1 1 orientation contain sub-micron grains. The electrical properties were influenced markedly by the microstructure and orientation of the films. The 1 1 1 oriented films exhibit a square-like hysteresis loop with remnant polarization (Pr) reaching 46 μC/cm2 under 550 kV/cm, whereas 1 0 0/0 0 1 oriented films have a Pr of 20 μC/cm2 with more slim hysteresis curves. Aging of the precursor solutions resulted in films growing with 1 0 0/0 0 1 texture and displaying inferior electrical properties.  相似文献   

7.
Hierarchically mesoporous-macroporous N-doped titania materials were fabricated by the thermal treatment of spontaneously formed hierarchical mesoporous-macroporous titanias with urea solution, in order to extend their photocatalytic applications from ultraviolet to visible-light range. The resultant meso-macroporous TiO2−xNx exhibited a bicrystalline (anatase and brookite) framework with high surface area and large porosity. The content of the doped nitrogen increased with the urea solution and the nitridation temperature, and the band gaps narrowed from 3.14 to 2.48 eV. The formation of OTiN bonds in the meso-macroporous TiO2−xNx was confirmed by the XPS and FT-IR spectra. The photocatalytic activity was evaluated by the photodegradation of methyl orange and rhodamine B under UV and visible-light irradiation, respectively. The significant improvement of photocatalytic activity for water contaminant decomposition under both UV and visible-light irradiation was observed, which is due to the incorporation of nitrogen into the titania lattice and the presence of the hierarchical meso-macroporous structure.  相似文献   

8.
Thermal and mechanical properties of polycrystalline La1−xAxNbO4 (x = 0, 0.005, 0.02 and A = Ca, Sr and Ba) are reported. The materials possess a ferroelastic to paraelastic phase transition close to 500 °C, and the linear thermal expansion is significantly lower (8.6 ± 0.5 × 10−6 °C−1) for the paraelastic phase compared to the ferroelastic phase (15 ± 3 × 10−6 °C−1). The hardness was significantly higher for acceptor doped materials (6 GPa) compared to pure LaNbO4 (3 GPa) due to a significantly smaller average grain size. The fracture toughness of La0.98Sr0.02NbO4, measured by single edge V-notched beam method, was 1.7 ± 0.2 MPa m1/2 independent of temperature up to 600 °C. The ferroelastic properties of the materials were confirmed by non-linear relationships between stress and strain during compression/decompression, a remnant strain after decompression and the presence of ferroelastic domains. The mechanical properties of LaNbO4-based materials are discussed with focus on ferroelasticity, microcracking due to crystallographic anisotropy and pinning of ferroelastic domain boundaries.  相似文献   

9.
The preparation, characterization and photophysical properties of heterobinuclear complexes {Pt(C^N^N)(CCbpy)}Ln(hfac)3 (C^N^N = 2-(6-(naphthalen-3-yl)-4-phenylpyridin-2-yl)pyridine; HCCbpy = 5-ethynyl-2,2′-bipyridine; Ln = Nd, Eu, Yb; hfac = hexafluoroacetylacetonate) are described. With excitation at 390  λex  500 nm which is the MLCT/LLCT absorption region of the Pt(C^N^N)(CCbpy) chromophore, lanthanide luminescence is successfully attained by Pt → Ln energy transfer from the platinum(II) antenna chromophore to the lanthanide center across the bridging CCbpy ligand.  相似文献   

10.
To obtain a novel, active and selective to diesel catalytic material for syngas processing via Fischer–Tropsch synthesis (FTS), a series of 20 wt.% cobalt catalysts has been prepared by impregnation of a mesoporous molecular sieve based on silica (SBA-15, Al-MCM-41, INT-MM1), and a commercial amorphous silica for comparison purposes. All materials were characterized by several physico-chemical techniques: AAS, BET surface area, XRD, TPR, and H2 chemisorption with pulse reoxidation and finally their reactivity on the FTS reaction was evaluated at 523 K, 10 bar, and H2/CO = 2. Catalytic and characterization results show a great influence of mesoporous support porosity on the structure, reducibility, and FTS catalytic behavior of cobalt oxide species supported over these ordered materials. It was found that the size of supported cobalt oxide species formed during the calcination step increased with the average pore size (Dp) of the mesoporous support. Thus, the catalyst with larger Co oxide species located in wide pore silica showed to be easily reducible, more active and very selective toward the diesel fraction. It seems to be the case of the Co/SBA-15 solid, which showed to be the most active solid (XCO 63%) when the same mass of catalyst was used. Under CO iso-conversion conditions (XCO 40%), Co/SBA-15 was more selective toward the formation of C5+ hydrocarbons (80%, α = 0.76) and less selective to CH4 (15%). On the contrary, when Al-MCM-41 and INT-MM1 were used as supports, a lower selectivity to C5+ and CO conversion and higher CH4 selectivity (20%) were observed due to the decrease of Dp, of the cobalt oxide species size and the reducibility degree of such species.  相似文献   

11.
Lamellar thicknesses and cross-hatching frequencies in α-isotactic polypropylene have been measured for two series of fractions using linear nucleation to provide large arrays of oriented lamellae in row structures for sampling. One series is of high tacticity polymers differing in molecular mass from 6 × 104 to 8 × 105, the other has low and high tacticity materials for 9 × 104 and 2 × 105 masses. These have allowed the differing influences of both molecular mass and tacticity to be evaluated. Lamellar thicknesses increase with molecular mass to 5 × 105 then level off. This is consistent with the fold surface increasing its free energy by 20% for longer molecules as its structure becomes progressively more complex. Except for the lowest fraction, the thickness of cross-hatching lamellae is less than that of its radial neighbours because of differential thickening. The frequency of cross-hatching is greatest for the least tactic fraction but decreases linearly with molecular length. This dependence suggests that chain ends play a key role in initiation probably by laying down the first segment in epitaxial orientation. This suggestion could also account for the reduced thermal stability of spherulite centres and regions of high cross-hatching density where there is competition for chain ends between thickening and cross-hatching. The curvature of lamellae at the very end of a row mirrors the dependence of lamellae thickness with molecular mass and allows cilia pressure, the factor strongly involved in causing the lamellar divergence underlying spherulitic growth, to be estimated as 100 Pa.  相似文献   

12.
The kinetics and mechanism of the preferential oxidation of carbon monoxide in the presence of hydrogen (PrOx) over an unsupported gold powder (mean particle size 20 nm and free of silver) have been investigated using flow fixed bed catalytic testing and diffuse reflectance infrared Fourier transform spectroscopy coupled to mass spectrometry (operando DRIFTS or DRIFTS-MS). It is shown that the presence of H2 has a favourable effect on the oxidation of CO, either by strongly accelerating the reaction or by preventing the catalyst deactivation, depending on the conditions used. Variation of the hydrogen partial pressure has allowed us to determine partial reaction orders for both CO oxidation and H2 oxidation under PrOx conditions. An infrared band at 2113 cm−1, corresponding to on-top CO adsorption on metallic gold, has been observed below 150 °C. In addition, adsorbed hydroxyl groups gradually develop simultaneously to gas-phase water in the course of the reaction at increasing temperatures. The promotional effect of hydrogen is ascribed to highly oxidative HxOy intermediates formed from the interaction between H2 and O2 on the gold surface.  相似文献   

13.
The preparation of TiO2 nanofilm was conducted on common glass via the sol–gel process. Glacial acetic acid and diethanolamine were used as inhibitors to prepare acidic and alkaline TiO2 sol, respectively. XRD, SEM, and EDS characterization showed that the film prepared from acidic TiO2 sol had a narrow particle size distribution of 15–30 nm and relatively poor particle crystallization while in the case of the film from alkaline TiO2 sol the nanoparticles were in a wide range of 10–80 nm and well crystallized. The photolysis evaluation through MO degradation revealed that the film from acidic sol possessed apparently better photocatalytic activity than that from alkaline sol. Heat treatment with longer time led to a 50% increase of the photocatalytic activity for the film.  相似文献   

14.
We report a simple, fast and reliable non-covalent route of functionalization of macroscopic carbon nanotubes (CNTs) surfaces based on the π-stacking of CNTs sidewall with fluorescein derivatives (i.e., amino- and isothiocyanate-). The electrochemiluminescent emission of Ru(bpy)32+ labels bearing –COOH and –NH2 side groups coupled with colorimetric and XPS measurements allowed to estimate the quantity of –NH2 and –NCS functions obtained. The evaluation of reactivity suggests that functionalized CNTs substrates, in particular those carrying –NCS groups, are suitable to covalently bind probe molecules such as proteins and oligonucleotides, thus opening up the possibility of future application in genomics and proteomics fields.  相似文献   

15.
Vanadium-containing hexagonal mesoporous silica catalysts were tested in oxidative dehydrogenation of ethane. V-HMS catalysts (0.3–9.0 wt.% V) were prepared by impregnation with solution of vanadyl acetylacetonate, and by incorporation of vanadium in the synthesis process. The prepared catalysts achieved a different distribution of vanadium species (isolated monomeric units with tetrahedral coordination, oligomeric units connected by VOV bonds up to distorted tetrahedral coordination, two-dimensional polymeric units in octahedral coordination, and bulk vanadium oxides). The contribution deals with the understanding of the relationship between the distribution of vanadium species and their activity in ODH of ethane. It has been found that both monomeric and oligomeric vanadium species play important role in ODH of ethane. The activity correlated with the population of oligomeric tetrahedrally coordinated vanadium species, which were evidenced by the UV–vis band at 315 nm. To analyze this effect, V-HMS catalysts were characterized by means of UV–vis spectroscopy, H2-TPR and N2-adsorption.  相似文献   

16.
Effect of pre-nucleation techniques on enhancing nucleation density and the adhesion of ultra-nanocrystalline diamond (UNCD) deposited on the Si substrates at low temperature were investigated. Four different pre-nucleation techniques were used for depositing UNCD films: (i) bias-enhanced nucleation (BEN); (ii) pre-carburized and then ultrasonicated with diamond powder solution (PC-U); (iii) ultrasonicated with diamond and Ti mixed powder solution (U-m); (iv) ultrasonicated with diamond powder solution (U). The nucleation density is lowest for UNCD/U-substrate films ( 108 grains/cm2), which results in roughest surface and poorest film-to-substrate adhesion. The UNCD/PC-U-substrate films show largest nucleation density ( 1 × 1011 grains/cm2) and most smooth surface (8.81 nm-rms), whereas the UNCD/BEN-substrate films exhibit the strongest adhesion to the Si substrates (critical loads =  67 mN). Such a phenomenon can be ascribed to the high kinetic energy of the carbon species, which easily form covalent bonding, Si–C, and bond strongly to both the Si and diamond.  相似文献   

17.
Because the high frequency operation of a field emission triode amplifier is dictated by the cutoff frequency and not the electron transit time, a high ratio of transconductance, gm to the overlapping interelectrode capacitance, Cg is the desired outcome. Consequently, to achieve high frequency performance of the CNT amplifier array in this study, Cg was reduced by performing a dual-mask photolithography process to minimize the overlapping gate area, and, the insulating layer's thickness was increased. Moreover, wedge-shaped CNT emitter arrays are employed to increase emission sites, resulting in return higher gm. Both dc and ac performance of the amplifier were characterized. The triode amplifier array exhibited a high current of  0.32 mA (74 mA/cm2), gm of  63 μS and voltage gain of  18 dB. Frequency response of the triode amplifier up to 20 kHz was also investigated. A theoretical cutoff frequency of > 70 MHz could be achieved with proper shielding of the test setup.  相似文献   

18.
In this paper, functional macromolecule poly(methacrylic acid) (PMAA) was grafted on the surface of silica gel particles using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia, and the grafted particle PMAA/SiO2 with strong adsorption ability for phenol was prepared. The adsorption mechanism and properties of PMAA/SiO2 for phenol were researched by static and dynamic methods. The experimental results showed that PMAA/SiO2 possesses strong adsorption ability for phenol with interaction of three kinds of hydrogen bonds including peculiar O–Hπ hydrogen bond (aromatic hydrogen bond) and O–HOC π hydrogen bond. The saturated adsorption amount could reach up to 162.88 mg g−1. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. pH and temperature were found to have great influence on the adsorption amount. Finally, PMAA/SiO2 was observed to possess excellent reusability properties as well.  相似文献   

19.
Sorbents for semidry-type flue gas desulfurization (FGD) process can be synthesized by mixing coal fly ash, calcium oxide, and calcium sulfate in a hydration process. As sorbent reactivity is directly correlated with the specific surface area of the sorbent, reacting temperature, concentration of the reacting gas species and relative humidity, two major aim in the development of a kinetic model for the FGD process are to obtain an accurate model and at the same time, incorporating all the parameters above. Thus, the objective of this work is to achieve these two aims. The kinetic model proposed is based on the material balance for the gaseous and solid phase using partial differential equations incorporating a modified surface coverage model which assumes that the reaction is controlled by chemical reaction on sorbent grain surface. The kinetic parameters of the mathematical model were obtained from a series of experimental desulfurization reactions carried out under isothermal conditions at various operating parameters; inlet concentration of SO2 (500 ppm  C0,SO2  2000 ppm), inlet concentration of NO (250 ppm  CO,NO  750 ppm), reaction temperature (60 °C  T  80 °C) and relative humidity (50%  RH  70%). For a variety of initial operating conditions, the mathematical model is shown to give comparable predictive capability when used for interpolation and extrapolation with error less than 7%. The model was found useful to predict the daily operation of flue gas desulfurization processes by using CaO/CaSO4/coal fly ash sorbent to remove SO2 from flue gas.  相似文献   

20.
The present work investigates the formation of nanotubes by anodizing titanium at 20 V in glycerol containing either 0.175 M or 0.35 M NH4F. A photoresist-masking method of thin Ti films allows to use SEM cross-sections to directly obtain information on oxide morphology, layer thickness and metal substrate loss. Therefore not only features of the initial growth stages but also oxide expansion factors can accurately be determined. The expansion factors were found to be 2.4 for the initial formation of a barrier layer, 1.7–1.9 during pore initiation and 2.7–3.1 as the main nanotubes develop. These values (>2.6) suggest substantial contribution to steady state tube growth by a plastic oxide flow mechanism. Combined with RBS efficiency measurements the method presented here allows facile and direct investigation of the mechanism of pore/tube formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号