首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
Sathian J  Jaatinen E 《Applied optics》2012,51(16):3684-3691
Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAM are not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190 mW/mm2. We show that this intensity dependent RAM is photorefractive in origin.  相似文献   

2.
Rothberg S 《Applied optics》2006,45(19):4523-4533
The fundamental mechanism by which speckle noise is generated in laser vibrometry before describing a new numerical simulation for prediction of speckle noise level in a real measurement is considered. Factors within the simulation include rate of change of phase within individual speckle transitions, low-pass filtering to match the frequency range of experimental data with which comparison is to be made, a track-and-hold facility for periods of low signal amplitude, and wavefront curvature effects. The simulation data provide real insight into the phase and amplitude modulation of the Doppler signal, and good agreement is found in the final comparison with experimental data from a measurement on a rotating target.  相似文献   

3.
An iodine stabilized dye laser system is described that provides traceable measurement of reference frequencies in the visible spectrum from 540 to 670 nm and in the near infrared at 1.15 /spl mu/m. The system allows calibration of the widely used 633 nm, 612 nm, and 543 nm HeNe laser systems. Also, frequency measurements of a polarization stabilized 1153 nm HeNe laser have been performed via frequency doubling and comparison with the dye system operating on the corresponding 576 nm lines. Studies of the shift sensitivities of the system at various wavelengths of interest are described for variation of iodine cell pressure, laser modulation amplitude, and optical saturation power. The dye system was also stabilized to hyperfine components associated with the 6-3 P(33) iodine transition and compared with a 633 nm iodine stabilized HeNe standard.  相似文献   

4.
Schilt S  Thévenaz L 《Applied optics》2004,43(22):4446-4453
An experimental method is presented for characterization of the combined intensity and frequency modulation produced when the injection current of a laser diode is modulated. The reported technique is based on the analysis of the harmonic signals produced when a modulated laser is used to probe a gas absorption line by the so-called wavelength-modulation spectroscopy method. Based on a theoretical model of this technique, we present two methods that facilitate the determination of (i) the deviation in laser frequency and (ii) the phase shift between intensity and frequency modulation. These methods are illustrated experimentally by measurement of the modulation parameters of a 2-microm distributed-feedback laser by use of a CO2 absorption line. The experimental results have been compared with those obtained with another traditional method and have shown full agreement in the frequency range (400 Hz-30 kHz) considered.  相似文献   

5.
Long-wavelength InGaAlAs-InP vertical-cavity surface-emitting lasers (LW-VCSELs) covering the wavelength range from 1.3 to 2.3 mum are presented. Furthermore, these lasers can be fabricated in a novel high-speed design-reducing parasitics to enable bandwidths in excess of 11 GHz at 1.55 mum. To the best of the authors' knowledge, this is the fastest 1.55 mum VCSEL ever presented. As a proof-of-concept one- and two-dimensional arrays have been fabricated with high yield. All devices use a buried tunnel junction for current confinement and a dielectric backside reflector with integrated electroplated gold-heatsink. This concept enables CW operation at room temperature with typical single-mode output powers above 1 mW. Both, wavelength range and modulation performance, together with VCSEL features such as operation voltage around IV and power consumption as low as 10-20 mW enable applications in tunable diode laser spectroscopy (TDLS) and optical data transmission. Error-free data transmission at 10 Gbit/s over 22 km which can be readily applied in uncooled coarse wavelength division multiplex passive optical networks is presented. A laser hygrometer using a 1.84 mum VCSEL demonstrates the functionality of TDLS systems with VCSELs.  相似文献   

6.
A Doppler global velocimetry (DGV) measurement technique with a sinusoidal laser frequency modulation is presented for measuring velocity fields in fluid flows. A cesium absorption cell is used for the conversion of the Doppler shift frequency into a change in light intensity, which can be measured by a fiber coupled avalanche photo diode array. Because of a harmonic analysis of the detector element signals, no errors due to detector offset drifts occur and no reference detector array is necessary for measuring the scattered light power. Hence, large errors such as image misalignment errors and beam split errors are eliminated. Furthermore, the measurement system is also capable of achieving high measurement rates up to the modulation frequency (100 kHz) and thus opens new perspectives to multiple point investigations of instationary flows, e.g., for turbulence analysis. A fundamental measurement uncertainty analysis based on the theory of Cramér and Rao is given and validated by experimental results. The current relation between time resolution and measurement uncertainty, as well as further optimization strategies, are discussed.  相似文献   

7.
We describe a characterization method based on diffraction for obtaining the phase response of spatial light modulators (SLMs), which in general exhibit both amplitude and phase modulation. Compared with the conventional interferometer-based approach, the method is characterized by a simple setup that enables in situ measurements, allows for substantial mechanical vibration, and permits the use of a light source with a fairly low temporal coherence. The phase determination is possible even for a SLM with a full amplitude modulation depth, i.e., even if there are nulls in the amplitude transmission characteristic of the SLM. The method successfully determines phase modulation values in the full 2pi rad range with high accuracy. The experimental work includes comparisons with interferometer measurements as well as a SLM characterization with a light-emitting diode (LED).  相似文献   

8.
Stan G  King SW  Cook RF 《Nanotechnology》2012,23(21):215703
In this work, a new procedure is demonstrated to retrieve the conservative and dissipative contributions to contact resonance atomic force microscopy (CR-AFM) measurements from the contact resonance frequency and resonance amplitude. By simultaneously tracking the CR-AFM frequency and amplitude during contact AFM scanning, the contact stiffness and damping were mapped with nanoscale resolution on copper (Cu) interconnects and low-k dielectric materials. A detailed surface mechanical characterization of the two materials and their interfaces was performed in terms of elastic moduli and contact damping coefficients by considering the system dynamics and included contact mechanics. Using Cu as a reference material, the CR-AFM measurements on the patterned structures showed a significant increase in the elastic modulus of the low-k dielectric material compared with that of a blanket pristine film. Such an increase in the elastic modulus suggests an enhancement in the densification of low-k dielectric films during patterning. In addition, the subsurface response of the materials was investigated in load-dependent CR-AFM point measurements and in this way a depth dimension was added to the common CR-AFM surface characterization. With the new proposed measurement procedure and analysis, the present investigation provides new insights into characterization of surface and subsurface mechanical responses of nanoscale structures and the integrity of their interfaces.  相似文献   

9.
A compact frequency-modulated, continuous wave (FM-cw) lidar system for measurement of distributed aerosol plumes and hard targets is presented. The system is based on intensity modulation of a laser diode and quadrature detection of the return signals. The advantages of using laser diode amplitude modulation and quadrature detection is a large reduction in the hardware required for processing and storing return signals as well as the availability of off-the-shelf integrated electronic components from the wireless and telecommunication communities. Equations to invert the quadrature signal components and determine spatial distributions of multiple targets are derived. Spatial scattering intensities are used to extract aerosol backscatter coefficients, which can then be directly compared to microphysics aerosol models for environmental measurements. Finally, results from laboratory measurements with a monostatic FM-cw lidar system with both hard targets and aerosols are discussed.  相似文献   

10.
半导体激光端点测长干涉仪实验系统   总被引:2,自引:1,他引:1  
半导体激光端点干涉测长法是利用半导体激光频率调制特性的一种在长度的两个端点干涉测量长度的新方法。本文介绍基于这种测长方法研制的半导体激光端点测长干涉仪实验的基本原理,构成,定标方法和测量结果。  相似文献   

11.
12.
Takahashi Y  Yoshino T  Ohde N 《Applied optics》1997,36(24):5881-5887
A direct frequency-modulated (FM) laser diode light source without light power variation is developed. The amplitude variation of the FM laser diode is compensated by means of a feedback system with use of a superluminescent diode as an external light power controller. Output power greater than 1 mW is obtained at the modulation frequency to 5 kHz with a >10 stabilization factor. By use of the amplitude-stabilized FM laser diode, we measured subfringes with high accuracy in FM continuous wave interferometry, increased the dynamic range of the displacement measurement, and improved the stabilization factor in the laser diode feedback interferometer.  相似文献   

13.
Liu JT  Jeffries JB  Hanson RK 《Applied optics》2004,43(35):6500-6509
A method that uses tunable diode lasers is developed for rapid temperature and concentration measurements of gases with highly broadened and congested spectra. Wavelength modulation absorption spectroscopy with 2f detection is utilized, because this derivative method offers benefits in dealing with blended spectral features. The 2f signal depends critically on the modulation depth of the laser alpha, which is increased to values above those typically achieved when wavelength modulation spectroscopy with diode lasers is performed. The 2f method with large modulation depths is validated by using near-IR diode lasers to probe pressure-broadened water-vapor features in the 1.4-microm region over a range of temperatures from 296 to 800 K and at pressures as high as 20 atm. Modulation depths as high as alpha = 0.8 cm(-1) are attained at modulation frequencies of 50 kHz and measurement bandwidths of 15 kHz. Comparisons of experimental results with 2f simulations, based on the HITRAN spectral database, provide confirmation of the capability of this method for rapid measurements of gas temperature and species concentration.  相似文献   

14.
Dua P  Dutta NK  Jaques J 《Applied optics》2004,43(8):1747-1751
Fiber-optic-based analog or digital community antenna television systems experience composite second-order (CSO) distortion caused by the interaction between the gain tilt of the doped fiber amplifier and the laser chirp due to modulation. The gain tilt for an analog-digital transmission system with a high-power erbium/ytterbium-codoped fiber amplifier has been experimentally measured and its contribution to the CSO distortion of the system is evaluated. The results are in good agreement when compared with the direct measurement of the CSO distortion of the transmission system with and without the amplifier. The dependence of the gain tilt on the modulation frequency and wavelength of the input light is also investigated.  相似文献   

15.
Precise measurement of the shift (i.e. microwave frequency shift induced by the electric field of the pumping light) in a rubidium atomic clock pumped by a semiconductor laser is discussed. The spectral lineshape of the microwave resonance, which is used as a frequency discriminator for the atomic clock in the optical microwave double resonance experiment, depends strongly on the spatial distribution of the laser beam intensity, laser frequency detuning, and modulation parameters of the microwave frequency. Based on measurements of the deformation of the resonance lineshape, a self-tuning system was built to compensate for the effect of light shift. As a result of controlling the laser frequency with this system, long-term drift of the microwave frequency as low as 6.3×10-13/h was obtained  相似文献   

16.
A laser range-finder has been designed for distances from 1 to 20 m with diffusing targets. The measurement principle using a frequency modulation continuous wave technique is first described. Improvement for short distance measurements is then proposed with a new set-up using a delay line and an avalanche photodiode working as an optoelectronic mixer used to obtain a wide-band and a low-noise photoreception.  相似文献   

17.
A technique for making fixed-frequency or wide-band real-time measurements of reflection coefficients, transmission coefficients, and fields in open or closed structures at UHF and microwave frequency is given. The basic system uses two isolated channels, which originate from a common CW source, and one channel is single-sideband modulated. These two signals are then added and mixed in a (homodyne) detector, and the detected signal at the modulation frequency displays the desired amplitude and phase information in real time simultaneously and independently. The sources of inherent phase and amplitude errors are considered, including those due to the unwanted sidebands created by imperfect modulation. Operation on the linear portion of the characteristic curve of a balanced detector tends to reduce these errors and increase the dynamic operating range. The system sensitivity should approach -110 to -120 dBm, and dynamic operating ranges of the order of 100 to 110 dB are possible.  相似文献   

18.
We demonstrate a wavelength-locked laser source that rapidly steps through six wavelengths distributed across a 1572.335 nm carbon dioxide (CO(2)) absorption line to allow precise measurements of atmospheric CO(2) absorption. A distributed-feedback laser diode (DFB-LD) was frequency-locked to the CO(2) line center by using a frequency modulation technique, limiting its peak-to-peak frequency drift to 0.3 MHz at 0.8 s averaging time over 72 hours. Four online DFB-LDs were then offset locked to this laser using phase-locked loops, retaining virtually the same absolute frequency stability. These online and two offline DFB-LDs were subsequently amplitude switched and combined. This produced a precise wavelength-stepped laser pulse train, to be amplified for CO(2) measurements.  相似文献   

19.
A new digital-signal-processing method for performing modulation tests on Bluetooth transmitters is presented and validated. No preliminary demodulation of the radio frequency transmitted signal is needed to gain the instantaneous frequency trace, on which standard measurement procedures have to be applied. The aforementioned task is, in fact, fulfilled through the application of the short-time Fourier transform (STFT), a typical time-frequency representation, to the acquired samples of the aforementioned signal. Moreover, no specific information concerning the operating conditions of the transmitter under test, such as carrier frequency and hopping sequence, is needed, thus facilitating measurement automation. The optimal tuning of STFT parameters, which are capable of providing the best reconstruction of the instantaneous frequency trajectory as well as the most accurate measurement outcomes, is established as the result of an exhaustive experimental activity.  相似文献   

20.
涡街流量计在工业现场工作时,输出信号易叠加噪声,尤其在小流量测量时,涡街信号易被现场噪声淹没,导致测量受限。针对涡街信号处理,提出一种基于遗传算法的双调制随机共振方法。该方法对输入信号进行频率和幅值双调制后进入非线性双稳系统,以系统输出信号的信噪比为适应度函数,通过二进制编码,将调制频率和幅值组合成一个二进制字符串,同时对两个参数进行并行寻优,得到最优解,使系统产生随机共振,增强涡街信号。搭建涡街流量计实验装置,实验结果表明,使用遗传算法可以有效搜索出调制频率和幅值最优解,搜索效率高,解决现有多参数寻优的困难,适用于涡街信号特别是小流量信号处理,能准确获取涡街频率,实现流量测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号