共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanolamine and L ‐arginine treated wood flour were added to polyvinyl chloride (PVC) in order to improve the interphase between PVC and wood. The influence of the treatment on pH‐value changes and nitrogen fixation of the wood and mechanical properties of the composite were evaluated. The treatments changed the pH of wood from acidic to basic. The highest nitrogen fixation was measured for monoethanolamine and L ‐arginine treated wood flour at high concentrations. Tensile strength, elongation at break, and unnotched impact strength were improved by ethanolamine and L ‐arginine treatments considerably. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
2.
Methyl methacrylate and ethylacrylate (MMA‐co‐EA) and methyl methacrylate and butylacrylate (MMA‐co‐BA) copolymeric processing aids were introduced into poly(vinyl chloride) (PVC)/33.3 wt % wood–sawdust composites containing 0.6 and 2.4 phr of calcium stearate lubricant. The properties of the composites were monitored in terms of processibility, rheology, thermal and structural stability, and mechanical properties. It was found that the mixing torque, wall shear stress, and extrudate swell ratio increased with increasing processing aid content because of increased PVC entanglement. MMA‐co‐BA (PA20) was found to be more effective than MMA‐co‐EA (K120 and K130), this being associated with the flexibility of the processing aids, and the dipole–dipole interactions between sawdust particles and polymeric processing aids. The sharkskin characteristic of the composite extrudate at high extrusion rate was moderated by the presence of processing aids. Adding the acrylic‐based processing aids and lubricant into PVC/sawdust composites improved the thermal and structural stability of the composites, which were evidenced by an increase in glass transition and decomposition temperatures and a decrease in polyene sequences, respectively. The changes in the mechanical properties of the composites involved a composite homogeneity, which was varied by degree of entanglement and the presence of wood sawdust, and un‐reacted processing aids left in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 782–790, 2004 相似文献
3.
Thermal and dynamic mechanical behaviors of wood plastic composites made of poly vinyl chloride (PVC) and surface treated, untreated wood flour were characterized by using differential scanning calorimetry and dynamic mechanical analysis. Glass transition temperature (Tg) of PVC was slightly increased by the addition of wood flour and by wood flour surface treatments. Heat capacity differences (ΔCp) of composites before and after glass transition were markedly reduced. PVC/wood composites exhibited smaller tan δ peaks than PVC alone, suggesting that less energy was dissipated for coordinated movements and disentanglements of PVC polymer chains in the composites. The rubbery plateaus of storage modulus (E′) curves almost disappeared for PVC/wood composites in contrast to a well defined plateau range for pure PVC. It is proposed that wood flour particles act as “physical crosslinking points” or “pinning centers” inside the PVC matrix, resulting in the absence of the rubbery plateau and high E′ above Tg. The mobility of PVC chain segments were further retarded by the presence of surface modified wood flour. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
4.
Mechanical properties and thermal and structural changes of poly(vinyl chloride) (PVC)/wood sawdust composites were assessed with respect to the effect of moisture content, varying from 0.33 to 3.00 % by weight in the composite, for three different wood sawdust contents. The swell ratio and texture characteristics of the composite extrudates were also evaluated. Unique explanations were given to describe changes in the composite properties in terms of molecular interactions between PVC, cellulosic sawdust and moisture, such as dipole–dipole interactions, interfacial defects and bonding, fibre swelling, and moisture evaporation. The results suggest that at low moisture content the tensile modulus decreased and elongation at break of the composites increased with moisture content, the effect being reversed for high moisture content. Tensile strength decreased with increasing moisture content up to 1–2 %, and then unexpectedly increased at higher moisture contents. The effect of moisture content on flexural properties of the composite was similar to that on tensile properties. Impact strength of the composites was considerably improved with moisture content at low sawdust contents (16.7 wt%), and was independent of the moisture content at higher sawdust contents (28.6 and 37.5 wt%). A decrease in decomposition temperature with an increase in polyene content was evidenced with increasing moisture content, while the glass transition temperature did not change with varying moisture content. The extrudate swell ratio increased with the shear rate but remained unaffected by moisture content. The bubbling and peeling‐off in the composite extrudate occurred as a result of the evaporation of water molecules and the application of a high shear rate. Copyright © 2004 Society of Chemical Industry 相似文献
5.
Nuno Rocha Jorge F.J. Coelho Ana C. Fonseca Algy Kazlauciunas Maria H. Gil Pedro M. Gonçalves James T. Guthrie 《应用聚合物科学杂志》2009,113(4):2727-2738
In this work, different strategies for improving the association between hydrophilic wood flour surfaces and poly(vinyl chloride) (PVC) hydrophobic surfaces were tested. Three new coupling agents, based on living radical polymerisation (LRP), involving PVC were synthesised and tested in formulations with PVC and wood flour. The melt mixing behaviour was analysed in terms of the torque exerted by the mixing blades and related to the structural properties of the mixture. These products were ground and sheets were produced by press moulding. The composites were characterised by dynamic mechanical analysis. It was found that the use of a new block copolymer poly(vinyl chloride)‐b‐poly(hydroxypropyl acrylate)‐b‐poly(vinyl chloride), prepared by LRP, increases the elastic modulus of the composite, under controlled conditions, involving the use of specific amounts of the copolymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
6.
Interface self‐reinforcing ability and antibacterial effect of natural chitosan modified polyvinyl chloride‐based wood flour composites 下载免费PDF全文
Natural chitosan (CS) at four different additions (10, 20, 30, and 40 phr) and particle size ranges (100–140, 140–180, 180–220, and over 260 mesh) are selected to improve the interface adhesion as well as endow a novel antibacterial function to wood flour/polyvinyl chloride (WF/PVC) composites. In the present study, we investigate the interface self‐reinforcing ability of CS to composites by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), mechanical testing instrument, and water absorption behavior test (WB). The antibacterial activity is also estimated by the method of membrane covering test (MCT) using Escherichia coli. The results recorded show that adding 30 phr CS with the particle size of over 260 mesh is considered to be perfect selection to prepare the excellent interfacial self‐reinforcing and antibacterial WF/PVC/CS composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39854. 相似文献
7.
The thermal and mechanical behavior of new natural polymeric composite materials after exposure to humid environments must be well known and understood in order to predict their performance in final applications. For this reason, composites made from unsaturated polyesters based on linseed oil and filled with wood flour were exposed to environments of different relative humidities and their final properties were measured. In general, the equilibrium moisture content increased as the wood flour percentage increased. Dynamic mechanical tests performed in temperature scan mode were carried out in order to monitor the changes resulting from moisture absorption on the main transition temperature of the matrix (Tα). The temperature of this transition decreased as the amount of absorbed water increased, but the effect was partially reversible by re‐drying the samples. The mechanical properties were also strongly affected by moisture. The flexural modulus and ultimate stress of the composites decreased after equilibration in humid environments. Copyright © 2006 Society of Chemical Industry 相似文献
8.
The enhancement performances of cotton stalk fiber/PVC composites by sequential two steps modification 下载免费PDF全文
In the present study, the cotton stalk fiber (CSF) was modified by sequential two steps of alkali and copper ethanolamine (CE) solution treatment. The unmodified and modified CSF/poly(vinyl chloride) (CSF/PVC) composites were prepared. The mechanical and physical performances of the various CSF/PVC composites were studied comparatively. By the modification of CE solution, all the tensile strength, tensile modulus, impact strength, water resistance, and heat distortion temperature of samples were enhanced continuously. The sample with comprehensive properties was obtained using 2% concentration of CE. The composites were also prepared with different CSF content. By increasing the CSF loading, all the tensile strength, elongation at breakage, tensile modulus, and heat distortion temperature of samples were enhanced. The existence of copper on the surface of CSF improved the thermal stability of the CSF/PVC composites. Water retention value, oil retention value, and scanning electron microscope were applied to reveal the components and microscopic change of the composites. The possible reaction mechanism of modification was proposed based on the experimental results and according to the previous literature. This method reported here may provide a new way for the fabrication of CSF/PVC composite in engineering applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46090. 相似文献
9.
This article describes the properties of composites using unplasticized PVC matrix and wood flour (obtained by crushing the bark of Eugenia jambolana) as filler. Composites were prepared by mixing PVC with varying amounts of wood flour (ranging from 10–40 phr; having particle sizes of 100–150 μm and <50μm) using two‐roll mill followed by compression molding. The effect of wood flour content and its particle size on the properties, i.e., mechanical, dynamic mechanical, and thermal was evaluated. Tensile strength, impact strength, and % elongation at break decreased with increasing amounts of wood flour. Stiffness of the composites (as determined by storage modulus) increased with increasing amounts of the filler. Modulus increased significantly when wood flour having particle size <50 μm was used. Morphological characterization (SEM) showed a uniform distribution of wood flour in the composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 相似文献
10.
Reinforcement on the mechanical‐, thermal‐, and water‐resistance properties of the wood flour/chitosan/poly(vinyl chloride) composites by physical and chemical modification 下载免费PDF全文
In this study, we aimed to physically and chemically modify wood flour (WF)/chitosan (CS) mixtures to reinforce the mechanical‐, thermal‐, and water‐resistance properties of WF/CS/poly(vinyl chloride) (PVC) composites with a three‐step modification process. This was a vacuum‐pressure treatment of sodium montmorillonite, inner intercalation replacement of organically modified montmorillonite, and surface grafting of glycidyl methacrylate (GMA). The untreated and modified mixtures were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy–energy‐dispersive spectroscopy, thermogravimetric analysis, and contact angle measurement. Meanwhile, the mechanical strengths and water absorption of WF/CS/PVC were estimated. The results indicate that the samples had a better performance after they were modified by montmorillonite (MMT) + GMA than when they were modified by only MMT. MMT and GMA showed a very synergistic enhancement to the mechanical‐, thermal‐, and water‐resistance properties of the WF/CS/PVC composites. Specifically, the maximum flexural and tensile strengths were increased by 10.59 and 12.28%, respectively. The maximum water absorption rate was decreased by 61.99%, and the maximum degradation temperature was delayed to the higher value from 314.3 and 374.9°C in the untreated sample to 388.8 and 412.8°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40757. 相似文献
11.
Plerospheres, defined here as superfine spherical particles (0.5–5 μm) separated from fly ash (rather than as other solid spherical particles, as some have used the term), are separated from coal fly ash but are dramatically different from it. Plerospheres can be used as polymer fillers to improve the properties of composites. With plerospheres used as fillers for polypropylene (PP) and unplasticized poly(vinyl chloride) (UPVC), the effects of the filler content, the particle sizes of the plerospheres, and the coupling agent on the composite properties were studied. The particle sizes of the plerospheres were 2 and 5 μm. The results suggested that the notched impact properties both at a normal temperature and a low temperature and the tensile and flexural properties of plerosphere/PP increased significantly when the content was increased from 0 to 30 wt % and further increased with the addition of a coupling agent. Differential scanning calorimetry indicated that the thermal properties of the plerosphere/PP composite improved. The surface characteristics and morphology of the impact fracture surface were examined in detail with scanning electron microscopy. The rheological performance of plerosphere/UPVC pipe composites obviously improved; the plasticizing time was shortened, and the maximum torque was reduced. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 126–131, 2004 相似文献
12.
Jean L. Leblanc Cristina R. G. Furtado Marcia C. A. M. Leite Leila L. Y. Visconte Ana M. F. de Souza 《应用聚合物科学杂志》2007,106(6):3653-3665
A series of poly(vinyl chloride) (PVC)/green coconut fiber (GCF) composites, with dioctyl phthalate (DOP) or thermoplastic polyurethane (TPU) as a plasticizer, were prepared by melt mixing. Their properties were studied in the molten state with an advanced nonlinear harmonic testing technique; in the solid state, the hardness and impact resistance were evaluated, and scanning electron microscopy was used for fractured surfaces. The effect of the fiber loading was investigated, as well as the role of the plasticizer. PVC–GCF composites are heterogeneous materials that, in the molten state, exhibit essentially a nonlinear viscoelastic character, in contrast to pure PVC, which has a linear viscoelastic region up to 50–60% strain. The complex modulus increases with the GCF content but in such a manner that the observed reinforcement is at best of hydrodynamic origin, without any specific chemical (i.e., permanent) interaction occurring between the polymer matrix and the fibers. As expected, PVC offers good wetting of GCFs, as reflected by the easy mixing and the rheological and mechanical properties. Fibers can be incorporated into PVC up to a 30% concentration without any problem, with the PVC/plasticizer ratio kept constant. Higher GCF levels could therefore be considered. Replacing DOP in part with TPU gives some benefit in terms of impact resistance, likely because of the viscoelastic nature of the latter and the associated energy absorption effects. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
13.
Alinaghi Karimi Saleh Nazari Ismaeil Ghasemi Mehdi Tajvidi Ghanbar Ebrahimi 《应用聚合物科学杂志》2006,102(5):4759-4763
The effect of the delignification of hornbeam fibers on the mechanical properties of wood fiber–polypropylene (PP) composites was studied. Original fibers and delignified fibers at three levels of delignification were mixed with PP at a weight ratio of 40:60 in an internal mixer. Maleic anhydride (0.5 wt %) as the coupling agent and dicumyl peroxide (0.1 wt %) as the initiator were applied. The produced composites were then hot‐pressed, and specimens for physical and mechanical testing were prepared. The results of the properties of the composite materials indicate that delignified fibers showed better performance in the enhancement of tensile strength and tensile modulus, whereas the hardness of the composites was unaffected by delignification. Delignified fibers also exhibited better water absorption resistance. Notched impact strength was higher for delignified fiber composites, but it was reduced at higher delignification levels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4759–4763, 2006 相似文献
14.
Monika Singh Divya Somvanshi Rajesh K. Singh Arun K. Mahanta Pralay Maiti Nira Misra Pradip Paik 《应用聚合物科学杂志》2020,137(27):48894
In this work, to inquire the impact of layered double hydroxide (LDH) nanoclay on functionalized poly(vinyl chloride) (PVC) through solution intercalation method, four kinds of nanocomposites were prepared. Mg-AL LDH and the obtained functionalize PVC composites were characterized through FT-IR, UV–Vis spectroscopy, TEM, XRD, contact angle, DSC, and UTM. Obtained results revealed that the functionalized PVC uniformly dispersed in the layer of LDH nanoclay. It is revealed that partially intercalated and disordered structure formed in PVC/LDH, PVC-TS (thiosulfate)/LDH, and PVC-S (sulfate)/LDH nanocomposites, whereas fully exfoliated structures formed in the PVC-TU (thiourea)/LDH nanocomposites. Further, it has been observed that the ultimate tensile strength for all the polymer nanocomposites enhanced with increased in the LDH content. These nanocomposites further exhibited higher thermal stability by at least by 51°C higher than the pristine PVC. Along with these, further it has been found that the functionalized PVC/LDH nanocomposites are proved to be effective as thermal stabilizer for PVC processing. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48894. 相似文献
15.
Multi‐monomer grafted copolymers, high‐density polyethylene‐grafted‐maleic anhydride‐styrene (HDPE‐g‐(MAH‐St)) and polyethylene wax‐grafted‐ maleic anhydride ((PE wax)‐g‐MAH), were synthesized and applied to prepare high‐performance high‐density polyethylene (HDPE)/wood flour (WF) composites. Interfacial synergistic compatibilization was studied via the coordinated blending of high‐density polyethylene‐grafted‐maleic anhydride (MPE‐St) and polyethylene wax‐grafted‐ maleic anhydride (MPW) in the high‐density polyethylene (HDPE)/wood flour (WF) composites. Scanning electron microscopy (SEM) morphology and three‐dimensional WF sketch presented that strong interactive interface between HDPE and WF, formed by MPE‐St with high graft degree of maleic anhydride (MAH) together with the permeating effect of MPW with a low molecular weight. Experimental results demonstrated that HDPE/WF composites compatibilized by MPE‐St/MPW compounds showed significant improvement in mechanical properties, rheological properties, and water resistance than those compatibilized by MPE, MPE‐St or MPW separately and the uncompatibilized composites. The mass ratio of MPE‐St/MPW for optimizing the HDPE/WF composites was 5:1. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42958. 相似文献
16.
XingBao Chen Xudong Wu Shiwei Zhao Yuan Lei Shiyi Zhou Jingxin Lei Liang Jiang 《应用聚合物科学杂志》2024,141(1):e54742
Phthalic plasticizer plays an important role in processing and manufacturing one of the universal polymer materials, poly (vinyl chloride) (PVC), which has been widely applied in every aspect of our lives. However, there still exists the intrinsic problem in migration resistance of phthalic plasticizer in long-term use. In this work, we take a facile and convenient approach by incorporating commercial graphene oxide (GO) into PVC matrix to prepare polyvinyl chloride/graphene oxide (PVC/GO) composites, forming a sheet structure for improving the migration resistance of phthalic plasticizer. The advantages of GO that has abundant oxygen-containing groups on its surface, including carboxyl groups at the sheet edges, epoxy groups, and hydroxyl groups on its basal planes. Especially, these oxygen-containing groups in GO are beneficial to blend with long molecular chain of PVC and the sheet structure of GO can prevent phthalic plasticizer migrating from interior PVC. Addition of GO not only effectively enhanced the mechanical properties of PVC/GO composites but also improve their migration resistance due to the sheet structure. This strategy provides an attractive way to solve the problem of migration of plasticizer with simple incorporation GO into the matrix of PVC, reinforcing the composite properties and broadening its applied fields. 相似文献
17.
A sample of poly(vinyl chloride) (PVC) and a polar plasticizer consisting of dioctylphthalate (DOP) and triisopropylphenylphosphate (TIPPP) was prepared and found to possess some electrical conductivity. Different samples of PVC compositions were formulated from the PVC-DOP-TIPPP system and also variable proportions of the conductive materials polyaniline or the Ni salt of ethylene glycol bisadipate ester. Dibutyltindilaurate as a heat stabilizer, titanium oxide as a filler, and sandorin red 20 pigment were added. The effect of the structure of polyaniline and Ni adipate ester on the electrical and mechanical properties of the PVC–DOP–TIPPP system was studied to obtain a semiconductive plasticized PVC with good mechanical properties. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 685–693, 1998 相似文献
18.
选择了不同的表面处理剂对纳米CaCO3进行表面改性. 研究了不同表面处理剂对CaCO3/PVC纳米复合材料微观结构、界面结合强度、力学性能及加工性能的影响.研究表明,钛酸酯偶联剂处理可使纳米CaCO3颗粒在PVC基体中达到良好分散,明显改善纳米CaCO3颗粒与PVC基体之间的界面结合,并提高其界面结合强度.力学性能和流变性能研究表明,钛酸酯处理的纳米CaCO3填充PVC具有更高的拉伸强度、冲击强度以及更低的平衡转矩, 而且CaCO3/PVC复合材料的冲击韧性在填充量为20%(mass)时达到最大值26.5 kJ8226;m-2,是纯PVC的4倍. 相似文献
19.
Xiaohong Zhao Yanjuan Zhang Huayu Hu Zuqiang Huang Yuben Qin Fang Shen Aimin Huang Zhenfei Feng 《应用聚合物科学杂志》2019,136(11):47176
To improve the thermal stability of poly(vinyl chloride) (PVC) and the utilization of lignin (L), different L esters were added to PVC to produce the plates with enhanced thermal stabilities. The properties and structures of the L ester–PVC plates and the properties of the L esters and their mixtures with PVC were analyzed by universal mechanical testing, static thermal stability testing, thermogravimetry–Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, FTIR spectroscopy, scanning electron microscopy, and differential scanning calorimetry. The results show that L improved the thermal stability of PVC, but the mechanical properties were substantially deteriorated. Proper esterification of L improved the thermal stabilities and mechanical properties of the plates. Noncyclic anhydride acetylated L–PVC plates possessed good static and dynamic thermal stabilities and mechanical properties. The PVC plates incorporated with the L esters with a degree of esterification of around 40% exhibited the best combination properties. Maleated L–PVC plates had good dynamic thermal stability and mechanical properties but poor static thermal stability. The opposite properties were found for succinylated L–PVC plates. The differences in the properties of different L ester–PVC plates were attributed to the different abilities of L esters to capture free radicals, the crosslinking reaction between L esters and PVC, and their compatibility. Different properties of the L esters indicated their different applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47176. 相似文献
20.
The influence of oil palm empty fruit bunch (OPEFB) fiber and oil palm empty fruit bunches grafted with poly(methyl methacrylate) (OPEFB‐g‐PMMA) on the tensile properties of poly(vinyl chloride) (PVC) was investigated. The OPEFB‐g‐PMMA fiber was first prepared with the optimum conditions for the grafting reaction, which were determined in our previous study. To produce composites, the PVC resin, OPEFB‐g‐PMMA fiber or ungrafted OPEFB fiber, and other additives were first dry‐blended with a laboratory blender before being milled into sheets on a two‐roll mill. Test specimens were then hot‐pressed, and then the tensile properties were determined. A comparison with the composite filled with the ungrafted OPEFB fiber showed that the tensile strength and elongation at break increased, whereas Young's modulus decreased, with the incorporation of 20 phr OPEFB‐g‐PMMA fiber into the PVC matrix. The trend of the tensile properties obtained in this study was supported by functional group analysis, glass‐transition temperature measurements, and surface morphological analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献