首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Epithelial ovarian cancer (EOC) ranks fifth as a cause of cancer deaths in women. Current diagnostic and monitoring markers have limited reliability for the detection of disease. We have tested the possibility of identifying candidate biomarkers present at low nanogram to picogram levels after removing both the 12 most abundant and 77 moderately abundant proteins from serum samples of EOC patients using antibody affinity columns. We showed that this approach allows the identification of proteins that are expressed at nanogram per liter levels in the serum. Using ICAT/MS/MS analysis, we identified 51 proteins that are differentially expressed by at least twofold. These proteins include leucine-rich α-2-glycoprotein, matrix metalloproteinase-9 (MMP-9), inter-α-trypsin inhibitor heavy chain H1, insulin-like growth factor-binding protein 6, insulin-like growth factor-binding protein 3, isoform 1 of epidermal growth factor receptor, angiopoietin-like protein 3 (ANGPTL3) and phosphatidylcholine-sterol acyltransferase. We confirmed the differential expression of MMP9 and ANGPTL3 in normal and ovarian cancer sera by ELISA assays. Further robust clinical evaluation of the candidate markers identified is necessary.  相似文献   

2.
The molecular and cellular mechanisms underlying the multistage processes of cancer progression and metastasis are complex and strictly depend on the interplay between tumor cells and surrounding tissues. Identification of protein aberrations in cancer pathophysiology requires a physiologically relevant experimental model. The mouse offers such a model to identify protein changes associated with tumor initiation and progression, metastasis development, tumor/microenvironment interplay, and treatment responses. Furthermore, the mouse model offers the ability to collect samples at any stage in tumor development from highly matched disease cases and controls with identical environmental and genetic backgrounds, thus providing an excellent method for biomarker discovery. Xenograft and genetically engineered mouse models have been widely used to identify proteomic patterns in tumor tissues and plasma samples associated with different stages of human cancer, including early cancer detection and development of metastasis. Here, we review proteomic strategies to identify proteins involved in key cancer processes within such animal models as well as biomarkers for diagnosis, prognosis, and monitoring of cancer progression and treatment response. Central to such studies is the ability to ensure at an early stage that the identified proteins are of clinical relevance by examining relevant specimens from larger cohorts of cancer patients.  相似文献   

3.
The receptor tyrosine kinase ErbB2 (HER2/neu) is overexpressed in ?30% of breast cancers and is associated with poor prognosis and an increased likelihood of metastasis. Clinical treatments such as trastuzumab are effective in less than 35% of women diagnosed as ErbB2‐positive, highlighting the necessity of searching for novel targets and alternative therapies. Herein, a proteomic screening strategy combining quantitative‐based gel electrophoresis and MS was used to compare the protein expression of 48 normal human breast and tumour tissues differing in ErbB2 expression and lymph node status. The aim was to identify proteins associated with the aggressive phenotype of ErbB2‐positive breast cancer which could be potential biomarkers of the disease as well as therapy targets. In total, 177 protein isoforms (107 gene products) differentially expressed between tissue groups were identified. Immunohistochemical staining of a tissue‐microarray was used for validation of selected protein candidates. We found that expression of HSP90α, laminin and GSTP1 significantly correlated with ErbB2 expression, while others such as AGR2, NM23H1 and Annexin 2 were overexpressed in greater than 40% of tumours. Finally, knocking‐down the expression by RNA interference of three candidates, AGR2, Transgelin2 and NM23H1 resulted in an enhanced invasive capacity of MDA‐MB435 cells. These data support the involvement of these targets in tumour progression and identify them as novel biomarkers of the disease.  相似文献   

4.
The human epidermal growth factor receptor type 2 (HER‐2/neu) oncoprotein is overexpressed in about 30% of breast cancers and associates with metastatic phenotypes of breast tumours. Dissecting the HER‐2/neu‐modulated molecules in cancer will be helpful in elucidating the underlying molecular mechanisms of HER‐2/neu‐driven tumourigenesis. We investigated the differential proteome profiles between microdissected HER‐2/neu‐positive and ‐negative tumours and unambiguously identified 21 proteins with diverse biological functions by peptide sequencing and NCBInr database interrogation. Six proteins were up‐regulated whereas 15 were down‐regulated in the HER‐2/neu‐positive tumours. Differential expressions of heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), 78 kDa glucose‐regulated protein (GRP78/Bip) and Raf‐1 kinase inhibitor protein (RKIP), which have not been previously reported as being linked to HER‐2/neu signalling, were further verified. Immunohistochemical staining on tissue microarray sections demonstrated a positive correlation of hnRNP H1 (p = 0.008) and negative correlations of GRP78 and RKIP (p = 0.018 and 0.013, respectively) with HER‐2/neu. Heregulin α1 enhanced hnRNP H1, but reduced GRP78 and RKIP expression in BT474 cells in a dose‐dependent manner, providing evidence of crosstalk between HER‐2/neu signalling and these modulators. Our studies have identified novel modulators that are likely to be intricately involved in HER‐2/neu‐driven tumour proliferation, invasion and metastasis.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is highly expressed in a variety of tumors, and is therefore an important biomarker for cancer diagnosis and a target for cancer therapy. We have developed a novel peptide-based immuno tandem mass spectrometry (iMALDI) diagnostic assay for highly sensitive, highly specific, and quantitative analysis of EGFR, which we have applied to the detection of the EGFR peptide in three cell lines and in a tumor biopsy sample. This assay is capable of detecting the EGFR target peptide bound to the antibody beads at attomole levels. The ability to directly obtain amino acid sequence data by MS/MS on any affinity-captured peptides provides specificity to this diagnostic technique. This avoids the problem of "false positives" which can result from the nonspecific binding that can occur with any affinity-based technique. The addition of stable-labeled versions of the target peptide (synthesized from stable-isotope coded amino acids) as internal standards allows absolute quantitation of the target protein.  相似文献   

6.
Cervical cancer screening is ideally suited for the development of biomarkers due to the ease of tissue acquisition and the well-established histological transitions. Furthermore, cell and biologic fluid obtained from cervix samples undergo specific molecular changes that can be profiled. However, the ideal manner and techniques for preparing cervical samples remains to be determined. To address this critical issue a patient screening protein and nucleic acid collection protocol was established. RNAlater was used to collect the samples followed by proteomic methods to identify proteins that were differentially expressed in normal cervical epithelial versus cervical cancer cells. Three hundred ninety spots were identified via 2-D DIGE that were expressed at either higher or lower levels (>three-fold) in cervical cancer samples. These proteomic results were compared to genes in a cDNA microarray analysis of microdissected neoplastic cervical specimens to identify overlapping patterns of expression. The most frequent pathways represented by the combined dataset were: cell cycle: G2/M DNA damage checkpoint regulation; aryl hydrocarbon receptor signaling; p53 signaling; cell cycle: G1/S checkpoint regulation; and the ER stress pathway. HNRPA2B1 was identified as a biomarker candidate with increased expression in cancer compared to normal cervix and validated by Western blot.  相似文献   

7.
Pancreatic cancer is a highly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. SW1990 and PANC-1 represent the two cancer cell lines, which are both derived from pancreatic duct, but at different cell differentiation stages. In this study, we applied the iTRAQ-labeling technology and 2-D strong cation exchange/reversed phase liquid chromatography – LC-MS/MS) to profile the secreted proteins of SW1990 and PANC-1 cells in a conditioned cell culture medium. A total of 401 proteins were identified by MS/MS and protein database searching, the percentages of these proteins predicted in the categories of plasma membrane, intracellular and secreted proteins were 29.2, 32.7 and 38.2%, respectively. Fifty six proteins were identified with unknown functions and 19 proteins were quantified with significant level changes between the two cancer cell lines under the specific cell condition with 12 proteins being up-regulated (>1.3-fold change) in PANC-1 (e.g. FLJ31222 protein, 97 kDa protein, type IV collagenase precursor, 38 kDa protein and centaurin) and seven proteins being up-regulated in SW1990 (e.g. fibroblast growth factor receptor substrate 2, putative p150, hypothetical protein LOC 654463 and LOC 55701). The proteins with significant level changes may provide a baseline to investigate mechanisms underlying the differentiation of two cell lines and can be further screened for better protein biomarkers in pancreatic cancer.  相似文献   

8.
The monoclonal antibody cetuximab directed against the epidermal growth factor receptor (EGFR) is an attractive agent for targeted therapy in advanced colorectal cancer (CRC), especially when combined with 5-fluorouracil (5-FU)-based chemotherapy. However, the mechanisms of cetuximab activity as chemosensitizer remain poorly understood. Using proteome-fluorescence-based technology, we found that cetuximab is able to suppress the expression of thymidylate synthase (TS), which is involved in the mechanism of 5-FU action. Caco-2, HRT-18, HT-29, WiDr and SW-480 CRC cells were found to express EGFR. SW-620 was used as EGFR-negative cell line. Only in EGFR-expressing cells cetuximab is able to inhibit TS expression. Combined treatment with cetuximab and 5-FU revealed a synergistic anti-tumor response that is closely correlated with functional activity of EGFR/mitogen-activated protein kinase (MAPK) pathway. Moreover, no correlation was seen between constitutive TS protein expression, level of cetuximab-induced TS down-regulation and response either to 5-FU alone or in combination with cetuximab. We demonstrated that only EGFR expression with high functional activity of EGFR/MAPK pathway is important for the synergistic effects between cetuximab and 5-FU in the investigated cell lines.  相似文献   

9.
The characterization of patients with acute coronary syndromes (ACS) at the molecular and cellular levels provides a novel vision for understanding the pathological and clinical expression of the disease. Recent advances in proteomic technologies permit the evaluation of systematic changes in protein expression in many biological systems and have been extensively applied to cardiovascular diseases (CVD). The cardiovascular system is in permanent intimate contact with blood, making blood-based biomarker discovery a particularly worthwhile approach. Thus, proteomics can potentially yield novel biomarkers reflecting CVD, establish earlier detection strategies, and monitor response to therapy. Here we review the different proteomic strategies used in the study of atherosclerosis and the novel proteins differentially expressed and secreted by atherosclerotic lesions which constitute novel potential biomarkers (HSP-27, Cathepsin D). Special attention is paid to MS-Imaging of atheroma plaque and the generation, for the first time, of 2-D images of lipids, showing the distribution of these molecules in the different areas of the atherosclerotic lesions. In addition new potential biomarkers have been identified in plasma (amyloid A1α, transtherytin), circulating cells (protein profile in monocytes from ACS patients) and individual cells constituents of atheroma plaques (endothelial, VSMC, macrophages) which provide novel insights into vascular pathophysiology.  相似文献   

10.
Platinum-based chemotherapy, such as cisplatin, is the primary treatment for ovarian cancer. However, drug resistance has become a major impediment to the successful treatment of ovarian cancer. To date, the molecular mechanisms of resistance to platinum-based chemotherapy remain unclear. In this study, we applied an LC/MS-based protein quantification method to examine the global protein expression of two pairs of ovarian cancer cell lines, A2780/A2780-CP (cisplatin-sensitive/cisplatin-resistant) and 2008/2008-C13*5.25 (cisplatin-sensitive/cisplatin-resistant). We identified and quantified over 2000 proteins from these cell lines and 760 proteins showed significant expression changes with a false discovery rate of less than 5% between paired groups. Based on the results we obtained, we suggest several potential pathways that may be involved in cisplatin resistance in human ovarian cancer. This study provides not only a new proteomic platform for large-scale quantitative protein analysis, but also important information for discovery of potential biomarkers of cisplatin resistance in ovarian cancer. Furthermore, these results may be clinically relevant for diagnostics, prognostics, and therapeutic improvement for ovarian cancer treatment.  相似文献   

11.
Lung cancer is the leading cancer in the United States and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring of lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called “fluid-biopsy” specimens have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins are the major content of fluid specimens and have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential glyco protein biomarkers using fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements, and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications.  相似文献   

12.
Breast cancers are classified into five intrinsic subtypes: Luminal subtype A, Luminal subtype B, HER2+, Basal, and Normal-like. In this study, we compared the plasma proteome of patients with Luminal A, Luminal B, HER2+, and Basal subtype with plasma from healthy individuals. Protein changes were considered significant if q-value (false discovery rate) was less than 5%. The highest number of changes in the plasma proteome was observed in patients with Luminal type B followed by Basal type breast cancers. The plasma proteome of Luminal A and HER2+ breast cancer patients did not differ significantly from healthy individuals. In Basal breast cancer, a significant number of plasma proteins were downregulated compared with healthy individuals. Acute phase-response proteins α-glycoprotein orosomucoid 1 and serum amyloid protein P were specifically upregulated in the plasma of Luminal B breast cancer patients, suggesting prevalence of low-grade inflammation. Proteins involved in immune response and free radical scavenging were downregulated in the plasma of Luminal B patients, which is in agreement with defective immune system observed in cancer patients. These results reveal intrinsic subtype specific changes in the plasma proteome that may influence tumor progression as well as the systemic effects of cancer.  相似文献   

13.
14.
In the development of new anti-cancer drugs to tackle the problem of resistance to current chemotherapeutic agents, a new series of anti-HER2 (human epidermal growth factor receptors 2) agents has been synthesized and investigated using different computational methods. Although non-selective, the most active inhibitor in the new series shows higher activity toward HER2 than EGFR. The induced fit docking protocol (IFD) is performed to find possible binding poses of the new inhibitors in the active site of the HER2 receptor. Molecular dynamic simulations of the inhibitor–protein complexes for the two most active compounds from the new series are carried out. Simulations stability is checked using different stability parameters. Different scoring functions are employed.  相似文献   

15.
Colorectal cancer (CRC) is a common malignancy and it contributes significantly to cancer mortality. Outcomes in colorectal cancer vary between patients and this is due to the complexity of colorectal carcinogenesis. Interactions between tumor cells and their microenvironment, genetic alterations, and changes in intracellular signalling networks are just some of the abnormal pathways involved in colorectal cancer development. Recent research has targeted components of all of these systems in order to develop biomarkers to aid in the early diagnosis of CRC and to assist in prognostic stratification. Proteomic analysis of tissue or blood-derived samples from CRC patients has proven to be a valuable technique for the identification of potentially informative biomarkers. Such biomarkers may prove to be clinically applicable and could offer greater patient acceptability when compared to conventional methods such as fecal-based testing. In this article we review the recent advances in the development of protein biomarkers of CRC with an emphasis on biomarkers available in the patient's serum and from tissue-based samples. Future challenges in terms of the development of accurate diagnostic, prognostic, and predictive biomarkers of CRC and the importance of validation and patient acceptability are also discussed.  相似文献   

16.
The purpose of this study is to establish a tumor marker that can be applied for the early detection and follow-up of oral cancer patients. Employing the proteomic approach using MALDI TOF-MS, 2-DE, patient's sera and culturing cell lines, the serum autoantibodies (autoAbs) were screened and the serum levels were estimated by ELISA. Targeting the tumor cell invasion into the surrounding stromal tissues, MRC-5 human fibroblasts were employed as the target cells and a mitochondrial membrane protein, sideroflexin 3 (SFXN3), was identified. The serum anti-SFXN3-autoAb levels elevated in patients with the oral squamous cell carcinoma significantly: with 77% sensitivity and 89% specificity against control samples. The serum anti-SFXN3-autoAb levels were mildly correlated with the primary tumor sizes, however, the levels were slightly highly elevated in T1 early cancer. An immunohistochemical analysis revealed that the SFXN3 protein is expressed in the stromal fibroblasts between the caner nests and also in the basal layer of the squamous epithelium. Changes in the serum anti-SFXN3-autoAb levels after therapy correlated with the clinical tumor burden. These findings demonstrated that the serum anti-SFXN3-autoAb is worthy of clinical evaluation as a potentially of the novel tumor maker for the early detection of oral squamous cell carcinoma.  相似文献   

17.
Oral squamous cell carcinoma (OSCC) has an absolute majority of all oral cancer. We used proteomic technology to analyze the protein expression profile in OSCC tissues and accompanying surrounding normal tissues in four oral locations (buccal mucosa, gingival mucosa, oral floor, and tongue). Ten protein spots were overexpressed more strongly in cancer tissues than normal ones, and were identified as proliferating cell nuclear antigen, 14-3-3 ε, 14-3-3 σ, proteasome subunit α type 5, translationally controlled tumor protein, eukaryotic translation initiation factor 3 subunit, macrophage capping protein, and mitochondrial isocitrate dehydrogenase subunit α. Macrophage capping protein and mitochondrial isocitrate dehydrogenase subunit α had two spots. Especially, we focused on 14-3-3 σ protein, one of the eight identified proteins, and assessed its expression level in four oral locations of OSCC by using differential display methods. The expression level of 14-3-3 σ protein was upregulated in four locations of oral cavity. Eight proteins which we identified in this study may play an important role in OSCC carcinogenesis and progression and could be used as diagnostic biomarkers of OSCC.  相似文献   

18.
Purpose: Histone Deacetylase Inhibitors (DI) ameliorates dystrophic muscle regeneration restoring muscular strength in the mdx mouse model of Duchenne muscular dystrophy (DMD). The further development of these compounds as drugs for DMD treatment is currently hampered by the lack of knowledge about DIs effect in large dystrophic animal models and that of suitable biomarkers to monitor their efficacy. Experimental design: In this study we applied proteomic analysis to identify differentially expressed proteins present in plasma samples from mdx mice treated with the Suberoylanilide hydroxamic acid (SAHA) and relative normal controls (WT). Results: Several differentially expressed proteins were identified between untreated wild type and mdx mice. Among these, fibrinogen, epidermal growth factor 2 receptor, major urinary protein and glutathione peroxidase 3 (GPX3) were constitutively up‐regulated in mdx, while complement C3, complement C6, gelsolin, leukaemia inhibitory factor receptor (LIFr), and alpha 2 macroglobulin were down‐regulated compared to WT mice. SAHA determined the normalization of LIFr and GPX3 protein level while apoliprotein E was de novo up‐regulated in comparison to vehicle‐treated mdx mice. Conclusions and clinical relevance: Collectively, these data unravel potential serological disease biomarkers of mdx that could be useful to monitor muscular dystrophy response to DI treatment.  相似文献   

19.
Helicobacter pylori was reported to be an important risk factor for the carcinogenesis of gastric cancer. Here, we used a proteomic approach to find differentially expressed proteins between the normal and tumor tissue of gastric cancer patients infected with H. pylori. In our results, we found annexin A4 was over-expressed in patients infected with H. pylori and was found in tumor cells, and over-expressed in gastric cancer SCM-1 cells after H. pylori infection. Ca(2+ ) can be induced by H. pylori and interact with annexin A4 Ca(2+) binding site to block the calmodulin-activated chloride conductance activation; therefore, it produces a new environment that benefits the malignant existence of H. pylori and raises the risk for gastric cancer. We also found interleuken-8 (IL-8) expression levels were increased in H. pylori infected SCM-1 cells. Combined with previous reports and our results, we summarize that the over-expression of annexin A4 in SCM-1 cells with H. pylori infection may subsequently induce IL-8 which can further cause tumor angiogenesis. In this paper, we show that annexin A4 is a potential novel molecular marker for gastric cancer with H. pylori infection, and our results may provide a new insight in the development of new anti-cancer drugs.  相似文献   

20.
Purpose : Germline mutations in BRCA1 result in a strong predisposition to breast cancer, with frequent loss of heterozygosity of the remaining wild‐type allele. The development of BRCA1 tumors is likely to depend on additional genetic alterations and gene expression changes which follow growth and DNA repair defects associated with BRCA1 deficiency. The identification of these modifications offers an opportunity to find surrogate markers of BRCA1 tumors. Here, we sought to identify differentially expressed proteins related to BRCA1 depletion. Experimental design : We used isogenic HeLa cells either stably knocked‐down or not for BRCA1 (BRCA1KD) and compared protein profiles of these cells by DIGE. Results : We detected increased levels of Replication protein A2 (RPA2) in BRCA1KD cells as compared to control cells. RPA2 is an essential protein required for DNA replication and repair. We further demonstrated that depletion of RPA2 subunit delays growth of BRCA1KD respect to isogenic control cells. Strikingly, elevated levels of RPA2 were more frequently observed in BRCA1 tumors when triple‐negative tumors from BRCA1 mutation carriers (n=13) and non‐carriers (n=36) were stained in situ for RPA2. Conclusions and clinical relevance : RPA2 up‐regulation may thus be involved in the growth and/or survival of BRCA1 tumor cells and useful in immunohistochemical discrimination of triple‐negative BRCA1 tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号