首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/copper phthalocyanine disulfonic acid (PEDOT: PSS/CuPc-[SO3H]2) composite films were prepared by using CuPc-(SO3H)2 as the dopant. EG treatment was applied to further improve the thermoelectric properties of PEDOT: PSS/CuPc-(SO3H)2 composites. Structural analyses indicated the strong π − π interactions existed between PEDOT: PSS and CuPc-(SO3H)2, and led to more ordered regions in the composite films, and benefit the conductivity. CuPc-(SO3H)2 can greatly improve the thermoelectric properties of PEDOT: PSS/CuPc-(SO3H)2 composite films, which have a Seebeck coefficient of 13.2 μV K−1 and a conductivity of 2.8 × 105 S/m with 20 wt% CuPc-(SO3H)2 at room temperature, and the corresponding power factor is 48.8 μW m−1 K−2, which is almost 6.83 times higher than the PEDOT: PSS films without CuPc-(SO3H)2.  相似文献   

2.
In this study, the effect of solvents on the morphology and conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) nanofibers is investigated. Conductive PEDOT:PSS nanofibers are electrospun by dissolving a fiber‐forming polymer, polyvinyl alcohol, in an aqueous dispersion of PEDOT:PSS. The conductivity of PEDOT:PSS nanofibers is enhanced 15‐fold by addition of DMSO and almost 30‐fold by addition of ethylene glycol to the spinning dopes. This improvement is attributed to the change in the conformation of the PEDOT chains from the coiled benzoid to the extended coil quinoid structure as confirmed by Raman spectroscopy, X‐ray diffraction, and differential scanning calorimetry. Scanning electron microscopy images show that less beady and more uniform fiber morphology could be obtained by incorporation of ethylene glycol in the spinning dopes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40305.  相似文献   

3.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is an important organic electrode for solution-processed low-cost electronic devices. However, it requires doping and post-solvent treatment to improve its conductivity, and the chemicals used for such treatments may affect the device fabrication process. In this study, we developed a novel route for exploiting ultrafast lasers (femtosecond and picosecond laser) to simultaneously enhance the conductivity and transparency of PEDOT:PSS films and fabricate patterned solution-processed electrodes for electronic devices. The conductivity of the PEDOT:PSS film was improved by three orders of magnitude (from 3.1 to 1024 S·cm–1), and high transparency of up to 88.5% (average visible transmittance, AVT) was achieved. Raman and depth-profiling X-ray photoelectron spectroscopy revealed that the oxidation level of PEDOT was enhanced, thereby increasing the carrier concentration. The surface PSS content also decreased, which is beneficial to the carrier mobility, resulting in significantly enhanced electrical conductivity. Further, we fabricated semitransparent perovskite solar cells using the as-made PEDOT:PSS as the transparent top electrodes, and a power conversion efficiency of 7.39% was achieved with 22.63% AVT. Thus, the proposed route for synthesizing conductive and transparent electrodes is promising for vacuum and doping-free electronics.  相似文献   

4.
In this work we studied the electrical behavior of Linde type A zeolite (K+) in the presence of two polymers, poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP), with excellent film forming properties. Homogeneous composite thin films of PVA/LTA‐zeolite and PVP/LTA‐zeolite were prepared with different zeolite concentrations. The current?voltage (I?V) characteristics of the composites were measured at different applied voltages. The results show that the conductivity properties are composition‐ratio‐dependent and are also related to the type of polymers. Moreover, a well‐defined step‐like change was detected in the I?V curve of PVP/LTA‐zeolite at very high applied voltage. © 2013 Society of Chemical Industry  相似文献   

5.
Conducting nanofibers of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polyvinyl alcohol (PEDOT:PSS/PVA) were fabricated at room temperature and via electrospinning with diameters ranging from 100 to 300 nm. The nanofibers were irradiated with Gamma and X-rays for varying lengths of time and the change in conductivity was evaluated. Raman and Electron Spin Resonance spectroscopy of X-ray irradiated nanofibers were obtained to determine the mechanism of conductivity degradation. A decrease in molecular ordering as well as chain scission via chain cross-linking and free radical formation are the two most likely mechanisms for change in conductivity. These nanofibers are promising candidates for use in highly sensitive, real-time electrically based sensor for radiation detection.  相似文献   

6.
Hybrid films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were prepared with different molecular weights of poly(ethylene oxide) (PEO). The cross-linking reaction between PEO and PEDOT:PSS was performed at high temperature and confirmed by using differential scanning calorimeter (DSC), contact angle measurement, and solid-state 1H NMR. The effect of chemical reaction on the conductivity and morphology of these hybrid films was studied by using 4-point probe and atomic force microscope (AFM), respectively. As-spun PEO/PEDOT:PSS films have lower electric conductivity due to the addition of nonconductive PEO, and exhibits no molecular weight dependence on conductivity. After chemical cross-linking reaction at high temperature, only PEDOT:PSS films with lowest molecular weight PEO additives show enhanced conductivity with increasing reaction time. AFM result indicates that the heat-treated PEO/PEDOT:PSS hybrid films show grain-like morphology compared to ethylene glycol treated PEDOT:PSS films which shows continuous PEDOT domain. In the present work we demonstrate that the cross-linking reaction can be used to improve the wet stability of PEDOT:PSS nanofiber, showing good water resistance and excellent dimensional stability.  相似文献   

7.
Electroconductive papers were produced by coating commercial base papers with blends of poly(3,4‐ethylenedioxythiophene)/poly(4‐styrenesulfonate) (PEDOT:PSS) and organic solvents. The bulk conductivities of the coated papers were measured using a four‐probe technique. One‐sided and two‐sided coating gave comparable conductivity levels. The presence of sorbitol and isopropanol in the PEDOT:PSS blends did not enhance the bulk conductivity of the coated paper, and with increasing concentrations of these solvents, the conductivity decreased due to dilution of the conducting component. Samples coated with PEDOT:PSS blends containing N‐methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO) exhibited a higher conductivity than those coated with pure PEDOT:PSS because of their plasticizing effect and conformational changes of PEDOT molecules indicated by the red shift and disappearance of the shoulder peak at about 1442 cm?1 in the Raman spectra of the coated samples. EDS imaging showed that PEDOT:PSS is distributed throughout the thickness direction of the paper. Contact angle measurements were made to monitor the hydrophilicity of the paper surface and total sulfur analysis was used to determine the amount of PEDOT:PSS deposited onto the paper. The tensile strength of all the paper samples increased slightly after treatment. Thus, it is demonstrated that enhanced bulk conductivity in the order of 10?3 S/cm can be achieved by using organic conductive materials and surface treatment techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The electropolymerization of COOH-functionalized 3,4-ethylenedioxythipohene was investigated by cyclic voltammetry, by anodic potential steps or by flow of a constant anodic current. Compared with PEDOT, an anodic shift of the oxidation polymerization potential is observed. Nevertheless the polymer film oxidation/reduction is shifted to more cathodic potentials, giving higher stored specific charges than those obtained from PEDOT films generated in similar conditions. The generated polymer shows a stable redox process, E0 = −0.04 V. EQCM results point to a p-doping process exchanging anions with solution, whereas a second reduction process at −0.77 V is related to a p-doping process exchanging cations. The new material is electrochromic: it is colourless in its oxidized state and blue colour in its reduced state. UV–Vis spectroelectrochemical results are similar to those obtained from PEDOT films.  相似文献   

9.
King ZA  Shaw CM  Spanninga SA  Martin DC 《Polymer》2011,52(5):1302-1308
Electrochemical deposition of the conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT) forms thin, conductive films that are especially suitable for charge transfer at the tissue-electrode interface of neural implants. For this study, the effects of counter-ion choice and annealing parameters on the electrical and structural properties of PEDOT were investigated. Films were polymerized with various organic and inorganic counter-ions. Studies of crystalline order were conducted via X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the electrical properties of these films. X-ray photoelectron spectroscopy (XPS) was used to investigate surface chemistry of PEDOT films. The results of XRD experiments showed that films polymerized with certain small counter-ions have a regular structure with strong (100) edge-to-edge correlations of PEDOT chains at ∼1.3 nm. After annealing at 170 °C for 1 h, the XRD peaks attributed to PEDOT disappeared. PEDOT polymerized with LiClO4 as a counter-ion showed improved impedance and charge storage capacity after annealing at 160 °C.  相似文献   

10.
Jianyong Ouyang  Qianfei Xu  Yang Yang  Gang Li 《Polymer》2004,45(25):8443-8450
The conductivity of a poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film is enhanced by more than 100-folds on adding some organic compounds into PEDOT:PSS aqueous solutions or by treating the PEDOT:PSS film with organic solvents, such as ethylene glycol (EG), 2-nitroethanol, methyl sulfoxide or 1-methyl-2-pyrrolidinone. The mechanism for this conductivity enhancement was studied through various chemical and physical characterizations. The PEDOT:PSS film which is soluble in water becomes insoluble after treatment with EG. This strongly suggests an increased interchain interaction among the PEDOT chains. Raman spectroscopy indicates that this increased interchain interaction results from conformational changes of the PEDOT chains, which change from a coil to linear or expanded-coil structure. The increased interchain interaction and conformation changes are further confirmed by the temperature dependence of conductivity and the electron spin resonance (ESR). It is found that EG treatment lowers the energy barrier for charge hopping among the PEDOT chains, lowers the polaron concentration in the PEDOT:PSS film by ∼50%, and increases the electrochemical activity of the PEDOT:PSS film in NaCl aqueous solution by ∼100%. Atomic force microscopy (AFM) and contact angle measurements show that the surface morphology of the PEDOT:PSS film changes as well after the EG treatment. Conductivity enhancement was also observed when other organic compounds were used, but it was strongly dependent on the chemical structure of the organic compounds, and observed only with organic compound with two or more polar groups. These experimental results support our proposal that the conductivity enhancement is due to the conformational change of the PEDOT chains and the driving force is the interaction between the dipoles of the organic compound and dipoles or charges on the PEDOT chains.  相似文献   

11.
Here, insignificant conductivity enhancement of PEDOT:PSS through adding different amounts of 2-methylimidazolium ionic liquids into PEDOT:PSS aqueous solutions is reported. Maximum conductivity was reached through 2-methylimidazolium hydrogen sulfate (5 wt.%) addition. It seems that observed conductivity enhancement mainly results from the impact of ionic liquids on the electrical properties and conformational change of PEDOT chains, and through weakening of the electrostatic interactions between PEDOT and PSS. Also, better conductivity was achieved through weak interactions between PEDOT and the PSS chain, which changes the PEDOT conformation and further delocalizes the polarons, as well as changes the electron transport properties.  相似文献   

12.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) was blended with poly(vinyl alcohol) (PVA) to form 0, 10, 20, 30, 40, and 50 vol % PEDOT–PSS/PVA solutions, and their freestanding films were prepared with a simple and cost‐effective solution casting technique at 27 °C in the absence of additives. Field emission scanning electron microscopy images revealed changes in the cocontinuous network to a rodlike morphology in the composite films from 10 to 50 vol % PEDOT–PSS/PVA. The alternating‐current conductivity was found to obey Jonscher's power law. The obtained values of the dielectric constant at 27 °C were relatively high, and a maximum value of 6.7 × 104 at 100 Hz for 40 vol % PEDOT–PSS'/PVA was observed. The dielectric loss attained a maximum value of about 106 at 100 Hz for 40 vol % PEDOT–PSS/PVA. However, a decrease in the dielectric parameters was observed at 50 vol % PEDOT–PSS/PVA because of locally induced strain in the microstructure. The variations in polarization with respect to the applied electric field (P–E) were determined for 50, 100, and 500 Hz at 500 V for the freestanding composite films of lower concentrations up to 20 vol % PEDOT–PSS/PVA. In summary, the dielectric and P–E measurements confirmed that the electrical characteristics changed in accordance to the contribution from both resistive and capacitive sites in the PEDOT–PSS/PVA composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45079.  相似文献   

13.
导电聚合物PEDOT/PSS-MPEG的制备及性能   总被引:1,自引:1,他引:0       下载免费PDF全文
刘书英  李坚  李玉玲 《化工学报》2012,63(4):1321-1327
引言导电高分子既有导体材料的光电学特性,又有良好的力学性能和可加工性[1],这使得导电高分子材料具有广泛的应用前景。聚噻吩类有机导电材料[2]就是这类材料中的一种。聚噻吩的室温电导率  相似文献   

14.
Sodium‐ion conducting polymer electrolytes based on poly(vinyl alcohol) complexed with sodium bromide were prepared with a solution‐casting technique. The structure of these films was determined with X‐ray diffraction, and the complexation of the salt with the polymer was confirmed with Fourier transform infrared spectroscopy studies. Electrical conductivity was measured with an alternating‐current impedance analyzer in the frequency range of 100 Hz to 1 MHz and in the temperature range of 303–373 K. It was observed that the magnitude of conductivity increased with the increase in the salt concentration as well as the temperature. The nature of the charge transport in these polymer electrolyte films was determined with both Wagner's polarization technique and the Watanabe technique. The dominant conducting species were found to be ions, particularly anions. Optical absorption studies were performed in the wavelength range of 200–600 nm, and the absorption edge, direct band gap, and indirect band gap values were evaluated. Electrochemical cells were fabricated, and their discharge characteristics were studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The chemical synthesis of an EDOT derivative endowed with an electron acceptor anthraquinone moiety (AQ-EDOT) is described. The electrochemical polymerization of the monomer has been studied by cyclic voltammetry, chronoamperometry and chronopotentiometry. The monomer oxidation-polymerization takes places on platinum at potentials more positive than 1.3 V vs. Ag/AgCl. The polymer film presents a stable redox process with E0 = 0.22 V, that can be assigned to the characteristic exchange process of the parent unsubstituted PEDOT polymer. An unstable redox process at E0 = −1.00 V, present decreasing charges on the consecutive cycles despite that the lost reduction charge is recovered by two irreversible oxidation processes taking place at high anodic potentials 0.00 and 0.16 V. A structural charge trapping effects occurring by reduction at −1.1 V and re-oxidation at 0.16 V of the anthraquinone moiety is suggested. The stable redox process is not affected by cycling allowing the obtention of the oxidation empirical kinetics, kinetic coefficients and reaction orders. Different initial states attained by reduction at different cathodic potentials for a constant time were explored for the kinetic study.  相似文献   

16.
This paper shows that oligomers are retained inside the polymer film during the electrosynthesis of poly(3,4-ethylenedioxythiophene), PEDOT, in aqueous media. The behavior of the electrochemically generated PEDOT film is highly dependent on the presence of these oligomers. A detailed study of the release of oligomers trapped in the PEDOT film has been carried out using bidimensional spectroelectrochemistry (BSEC), spectroelectrochemical quartz crystal microbalance (SEQCM) and scanning electrochemical microscopy (SECM). These multiresponse techniques have allowed us to determine when these EDOT oligomers are released into solution and to investigate their electrochromic properties. Mass spectroscopy measurements revealed that most of these oligomers consist of four or six monomer units, which seem to be the most stable species in aqueous solution.  相似文献   

17.
Ion‐implantation‐induced electrical conductivity in a polymer surface is known to have a different mechanism from that of metals and semiconductors. We used a technique called plasma immersion ion implantation and deposition and combined it with a titanium cathodic vacuum arc to modify the surface electrical conductivity of poly(ethylene terephthalate) (PET). The conductivity curve as a function of temperature well fitted the Mott hopping model, which has been proposed for many disordered systems. In addition, we also observed conductivity degradation when modified PET was kept at room temperature. The degradation showed a quasi‐exponential decay as a function of time, that is, an aging effect, which has been seldom reported in the literature to the best of our knowledge. This could have resulted from the unusual structure of PET's surface after ion implantation. A new formula for electrical conductivity in modified PET is proposed that considers both temperature and aging effects. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
With an aim to develop anti‐electrostatic discharge materials based on biodegradable polymers, poly(vinyl alcohol) films composited with two different conductive fillers (carbon black and aluminium) at various fillers contents (20?60%wt), were manufactured using solvent‐casting technique. The mechanical properties of such the films were investigated through tensile stress‐strain tests. Wettability and morphology of the composite films were performed by water contact angle measurement and SEM, respectively. Young's modulus of the composite films can be increased with the addition of conductive fillers. The surface of the composite films showed non‐homogeneous appearance, in which the phase boundary within the composites was clearly observed and the conductive fillers formed aggregation structure at high filler concentration. In addition, the composite films exhibited better hydrophobicity when higher conductive filler content was added. TGA results suggested that both carbon black and aluminum have proven their efficiency to enhance thermal stability of poly(vinyl alcohol). Investigation of cross‐cut adhesion performance of the prepared composite films revealed that carbon black‐filled composites exhibited excellent adhesion strength. The effect of conductive filler content on surface resistivity of the composite films was also examined. The experimental results confirmed that both the fillers used in this study can improve the electrical conductivity of poly(vinyl alcohol) hydrogel. The surface resistivity of the composite films was reduced by several orders of magnitude when the filler of its critical concentration was applied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42234.  相似文献   

19.
Solid polymer membranes from poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐acrylic acid) (PAA) with varying doping ratios of sorbitol were prepared using the solution casting method. The films were examined with Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and AC impedance spectroscopy. The impedance measurements showed that the ionic conductivity of PVA–PAA polymer membrane can be controlled by controlled doping of sorbitol within the polymer blends. The PVA–PAA–sorbitol membranes were found to exhibit excellent thermal properties and were stable for a wide temperature range (398–563K), which creates a possibility of using them as suitable polymers for device applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Reduced graphene oxide-poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (rGO-PEDOT:PTS) hybrid electrode films were synthesized directly on a substrate by interfacial polymerization between an oxidizing solid layer and liquid droplets of 3,4-ethylenedioxythiophene (EDOT) produced by electrospraying. The EDOT reduced the graphene oxide by donating electrons during its transformation into PEDOT:PTS, and hybrid films consisting of rGO distributed in a matrix of PEDOT:PTS were obtained. These rGO-PEDOT:PTS hybrid films showed excellent electrical conductivities as high as 1,500 S/cm and a sheet resistance of 70 Ω sq-1. The conductivity values are up to 50% greater than those of films containing conductive PEDOT:PTS alone. These results confirm that highly conductive rGO-PEDOT:PTS hybrid films can potentially be used as organic transparent electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号