首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The relations between the properties and the blend ratios of natural rubber (NR) and styrene-butadiene rubber (SBR) blends were studied in comparison with four blending methods. The relations between the properties of unvulcanized and vulcanized blends and the blend ratios of blends prepared by means of solution blending, latex blending, roll blending, and Banbury mixer blending were studied. In practice, such rubber blending methods as roll blending are more effective for obtaining uniform blends than Banbury mixer blending the latter. In roll blending, it is more effective to blend NR and SBR by way of a master-batch in which the ingredients are compounded beforehand than to blend raw rubber. In solution and latex blending, very uniform blends are easily obtained. It was found, however, that the properties of NR/SBR blends prepared carefully showed a direct relation to their blend ratios, regardless of blending method used.  相似文献   

2.
Dynamic vulcanization was studied in terms of the change in α‐relaxation temperatures of the LDPE matrix, morphology, and mechanical properties of LDPE/ozonolysed NR blends which were vulcanized at various blend ratios and with different curing systems, i.e., peroxide and sulfur systems. The ozonolysed NR with M w = 8.30 × 105 g mol−1 and M n = 2.62 × 105 g mol−1, prepared by the in situ ozonolysis reaction of natural rubber latex, was used in this study. The significant change in the α‐relaxation temperature of LDPE in the LDPE/ozonolysed NR, dynamically vulcanized using the sulfur system, suggested that sulfur vulcanization of the blend gave a higher degree of crosslink density than using peroxide and corresponded with the improved damping property and homogenous phase morphology. However, the peroxide cured blends of LDPE/ozonolyzed NR gave more improvement of tensile strength and elongation at break than the sulfur cured system. Furthermore, the mechanical properties of tensile strength, elongation at break, and damping were improved by increasing the ozonolyzed natural rubber content in both DCP and sulfur cured blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Rubber–rubber blends are used widely in industry, for example, in tire manufacture. It is often difficult to characterize interfaces in such rubber–rubber blends quantitatively because of the similarity in the chemical structure of the component rubbers. Here, a new method was suggested for the measurement of the weight fraction of the interface in rubber–rubber blends using modulated‐temperature differential scanning calorimetry (M‐TDSC). Quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from M‐TDSC allows the weight fraction of the interface to be calculated. As examples, polybutadiene rubber (BR)–natural rubber (NR), BR–styrene‐co‐butadiene rubber (SBR), SBR–NR, and nitrile rubber (NBR)–NR blend systems were analyzed. The interfacial content in these blends was obtained. SBR is partially miscible with BR. The cis‐structure content in BR has an obvious effect on the extent of mixing in the SBR–BR blends. With increasing styrene content in the SBR in the SBR–BR blends, the interface content decreases. NR is partially miscible with both BR and SBR. The NBR used in this research is essentially immiscible with NR. The maximum amount of interface was found to be at the 50:50 blend composition in BR–NR, SBR–BR, and SBR–NR systems. Quantitative analysis of interfaces in these blend systems is reported for the first time. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1791–1798, 2000  相似文献   

4.
Polypropylene blends containing a dispersed phase of scrap rubber dusts obtained from sport shoes manufacture; midsole (M, vulcanized EVA foam) and outsole (O, vulcanized rubber blend of NR, SBR, and BR) were studied. The influence of various compatibilizers on the mechanical properties of these blends were investigated. Significant development of impact strength was attained by using 6 and 10 phr of styrene–ethylene–butylene–styrene (SEBS) and maleic anhydride‐grafted styrene–ethylene–butylene–styrene (SEBS‐g‐MA) as compatibilizers for both compounds filled with midsole and outsole dusts. The tensile strength of each compound was slightly decreased when the compatibilizer loading increased, whereas the elongation at break was significantly increased. The enhancements of the impact strength and the elongation at break are believed to arise from reduction of interfacial tension between two phases of the rubber and the PP, which results in some reduction of the particle size of the fillers. Scanning electron microscopy (SEM) confirmed the evidence of the reduction of scrap rubber dust into small rubber particle sizes in the compound, and also showed the occurrence of some fibrils. Optical microscopy (crossed polars) observations suggested that the addition of the rubber dust resulted in a less regular spherulite texture and less sharp spherulite boundaries. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 148–159, 2002  相似文献   

5.
The effect of the blend ratio on the thermal, morphological, and physicomechanical properties of (chlorinated polyethylene rubber)/(chloroprene rubber) (CPE/CR) blends was studied. Two distinct glass transition temperatures (Tg) of all blends were observed in differential scanning calorimetry curves, falling between the Tg of the two pure rubbers. Analysis of the blends by scanning electron microscopy showed both dispersed and continuous phase morphology that depended on the blend composition. Thermogravimetric analysis showed that all the compounds underwent two stages of thermal degradation. The Mooney viscosity and optimum cure times increased with the increase in CPE contents, whereas the scorch times decreased. The tensile strength and elongation at break decreased, whereas the 100% modulus, hardness, and compression set increased with the increase of CPE content; the tear strength had the lowest value for the 50/50 CPE/CR blend because of the poor miscibility. The results from thermal aging and oil resistance tests showed that pure CPE possessed better thermal aging property and oil resistance than those of pure CR. Thus, considerable improvement in oil resistance of the blend compounds was achieved with the increase of CPE content. J. VINYL ADDIT. TECHNOL., 21:18–23, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Mechanical, dynamic, thermal, and morphological properties of dynamically cured 60/40 NR/PP TPVs with various loading levels of paraffinic oil were investigated. It was found that stiffness, hardness, tensile strength, storage shear modulus, complex viscosity, glass transition temperature (Tg) of the vulcanized rubber phase, degree of crystallinity and crystalline melting temperature (Tm) of the polypropylene (PP) phase decreased with increasing loading levels of oil. This is attributed to distribution of oil into the PP and vulcanized rubber domains causing oil‐swollen amorphous phase and vulcanized rubber domains. An increasing trend of elastic response in terms of tension set and damping factor was observed in the TPVs with loading levels of oil in a range of 0–20 phr. It is supposed that a major proportion of oil was first preferably migrated into the PP phase and caused an abrupt decreasing trend of degree of crystallinity and Tm of the PP phase. The dispersed vulcanized rubber domains remained small as particles with a low degree of swelling. Increasing loading levels of oil higher than 20 phr caused a decreasing trend of elongation at break and elastomeric properties. Saturation of oil in the PP phase was expected and the excess oil was transferred to the rubber phase which thereafter caused larger swollen vulcanized rubber domains. The remaining amount of oil was able to separate as submicron pools distributed in the PP matrix. This caused lowering of Tg, Tm, crystallinity of PP phase as well as strength, elastomeric, and dynamic properties of the TPVs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Dichlorocarbene modification of natural rubber (NR) carried out by alkaline hydrolysis of chloroform in presence of cetyl trimethyl ammonium bromide as phase‐transfer catalyst was investigated. Extent of chemical reaction was characterized by estimation of chlorine content and FTIR studies. Rate of dichlorocarbene addition depends on the time and temperature of reaction. Reaction carried out at 60°C for 2 h yielded a material with a chlorine content of 15%. Chemical modification of NR was accompanied by introduction of chlorine through cyclopropyl ring to the main chain of NR as revealed from FTIR studies. As level of chlorination increased, the physical nature of NR changed from a soft flexible state to a hard nontacky form. Blends of NR with hydrogenated nitrile rubber (HNBR) containing three to seven parts of dichlorocarbene‐modified NR (DCNR) of chlorine content 15% could be prepared by conventional mill mixing. Incorporation of DCNR into blends of NR and HNBR promoted polar interaction between the chlorine segments and acrylonitrile segments of the blend as shown from the shift in characteristic IR absorption peaks and shift in Tg from DSC studies. As a consequence, DCNR acted as an interface modifier in blends of NR and HNBR. Blends of NR and HNBR containing DCNR showed a considerable improvement in cure behavior, physical properties, and ageing characteristics in oil, ozone, and high temperature compared to pure blends of NR and HNBR. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4401–4409, 2006  相似文献   

8.
The curing characterizations of natural rubber (NR) and styrene butadiene rubber (SBR) lattices and their blends with and without NR-g-MA and SBR-g-MA were studied by using oscillating disc rheometer methods. The minimum value for torque decreases with increasing NR in the blends and with the incorporation ofNR-g-MA and SBR-g-MA. The value of maximum torque increases with increasing of SBR in the blend and with the presence of (NR-g-MA and SBR-g-MA) is decreased. The mechanical properties of the samples were studied. The tensile strengths increased steadily with an increase of NR content in the blend. Thermal characteristics of these latex blends were studied by thermogravimetric analysis. Thermal degradation of these individual lattices and their blends were investigated with special reference to blend ratio and vulcanization techniques. As the SBR content in the blends increased their thermal stability was also found to increase. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
This article examines the physical and mechanical characteristics of mixtures of two different synthetic rubbers, namely styrene-butadiene rubber (SBR) and nitril-butadiene rubber (NBR), with novolac type phenolic-resin (PH). According to Taguchi experimental design method, it is shown that the addition of PH increases the crosslinking density of rubber phase probably due to its curative effects. Thermal analysis of the blends indicates that, contrary to NBR/PH blend, thermal stability of SBR/PH blend is dependent on sulfur content due to predominant polysulfidic crosslinks formed in SBR. Slight shift in glass-transition temperature (Tg) of pure SBR and NBR vulcanizates by the addition of PH suggests that both SBR/PH and NBR/PH are incompatible blends with a partially soluble PH in the rubber phase. Two-phase morphology of the mixtures is also evidenced by scanning electron microscopy. Correlation of the rubber/PH modulus versus PH concentration by Halpin-Tsai model shows a deviation from the model. Presence of PH in the rubber phase is thought to vary the mechanical properties of the rubber phase by changing both the crosslinking density and rigidity of the molecular network of the rubber, leading to misuse of modulus of pure rubber in Halpin-Tsai equation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Miscible blends from plasticized poly(vinyl chloride), and epoxidized natural rubber having 50 mol% epoxidation level were prepared in a Brabender Plasticorder by the melt-mixing technique. Changes in Brabender torque and temperature, density, dynamic mechanical properties, and differential scanning calorimetry of the samples were examined as a function of blend composition. The plasticized poly(vinyl chloride)/epoxidized natural rubber blends behaved as a compatible system at all composition ranges as evident from their single glass-rubber transition temperature (Tg) obtained from dynamic mechanical analysis as well as from differential scanning calorimetry. Profound changes in the nature of the glass-rubber transition were noted with respect to blend composition. The Tg-width values of blends lie between those of plasticized poly(vinyl chloride) and epoxidized natural rubber.  相似文献   

11.
Thermoplastic elastomers, prepared by melt blending of natural rubber (NR) and isotactic polypropylene (PP) through a dynamic vulcanization technique, were developed during the later 1970s. However, they have certain drawbacks due to thermal degradation and higher molecular weight of NR. In the study reported here, NR was masticated to different levels prior its addition to isotactic polypropylene to improve the flow properties and to reduce the incompatibility resulting from molecular weight mismatch of NR/PP thermoplastic blends. Mixing energy curves of uncrosslinked blends and those of dynamically vulcanized blends crosslinked using different cure systems were compared. The mixing energy curves of blends containing NR of different molecular weight (M n) and two grades of PP (injection and film grades) were also compared. Technological and processing properties of the dynamically vulcanized (sulphur and peroxide cure systems) and unvulcanized blends were compared with those of the samples containing unmasticated NR. The results indicated that a number average molecular weight in the range 4 × 105 for NR increased the procoessability without significantly affecting the technological properties of NR/PP thermoplastic blends. Among the three cure systems studied Luperox 101 and dicumyl peroxide gave better technological properties than the sulphur‐cured samples. Two antioxidants, viz. quinoline (TDQ) and imidazole (MBI) type, were tried in NR/PP blends. It was found that TDQ imparts better aging resistance compared to MBI. The improvement in processability due to the reduction in molecular weight of natural rubber by mastication is more noticeable in the case of peroxide vulcanized blends compared to sulphur vulcanized samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2063–2068, 2004  相似文献   

12.
The blends of polystyrene (PS) and styrene‐butadiene rubber (SBR) are melt‐blended at different ratios to form physical thermoplastic elastomers. This polymeric blend is expected to behave more or less similar to chemically synthesized block copolymers such as styrene‐butadiene block copolymers (SBS). In this study, mechanical and the thermomechanical properties of this blend are investigated and compared to those of SBS copolymer. As far as morphology is considered, the blend shows a two‐phase morphology with an interface, which shows very weak interactions. According to the observed morphology and the domain size of dispersed phase the blends are of good integrity. The mechanical properties of the blends confirm the integrity of the blend and effective interface stress transfer. The tensile and Izod impact properties of the blends shows improvements upon increase in SBR content of the blend. As SBR content augments the elongation at break increases, whereas tensile dissipated energy and impact resistance go through a maximum. Therefore, blend with SBR‐content in 60–75% range can be considered as preferred one. In a wide range of concentration a phase inversion was observed and Tg‐depression was detected also for the SBR phase. This Tg‐depression was correlated to the changes in dynamics of segments (segmental mobility) near the surfaces. Using the proposed relationships between Tg‐depression and the thickness of the thin films, it was tried to calculate domain size of SBR inclusions in PS matrix. A rough correlation between SBR domain sizes in SEM images and calculated thicknesses using Tg‐depression in thin films was found. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The dynamic mechanical behaviour of uncrosslinked and crosslinked styrene butadiene rubber/poly (ethylene-co-vinyl acetate) (SBR/EVA) blends was studied with reference to the effects of blend ratio, crosslinking systems, a compatibilizer viz. maleic-anhydride grafted poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS-g-MA), frequency and temperature. The two separate tan δ peaks, obtained during DMA, indicated the immiscibility of SBR/EVA system. The damping properties increased with SBR content for uncrosslinked and crosslinked blends. In the case of crosslinked systems, depending upon the type of crosslinking agent used, the glass transition temperature (T g) of SBR phase has been found to be shifted to higher temperatures. The damping characteristics of the blends were observed to be affected by the variations in frequency. The addition of the compatibilizer improved the storage modulus and reduced the damping properties. These results have been correlated with the morphology of the blends, attested by scanning electron micrographs. The activation energy for glass transition has been computed. The experimental data on storage modulus were compared with theoretical predictions.  相似文献   

14.
This study sought to develop novel elastomeric compounds using natural rubber (NR) and ultra-low-density polyethylene (ULDPE). Blends were prepared by means of a two-roll mill for three ratios (70/30, 60/40, and 50/50 NR/ULDPE). Conventional vulcanization was performed in a compression mold. The physical and mechanical properties of the blend were determined according to ASTM standards. The results were compared with those obtained from NR blended with styrene-butadiene rubber (SBR). The morphological examinations with scanning electron microscopy indicated that ULDPE was compatible with NR; thus, the addition of a compatibilizer was not necessary. The cocontinuous phase was dominant in the NR/ULDPE blend containing 50 and 60 wt % NR. The tensile properties, tear resistance, and aging resistance of the NR/ULDPE blends were found to be superior to those of NR/SBR blends. On the other hand, the abrasion and flex cracking resistances of the NR/ULDPE blend were inferior to those exhibited by SBR blends but the Mooney viscosity and resilience of both blends fell in the same range. However, the addition of dicumyl peroxide appeared to have caused crosslinking of the ULDPE phase in the blend, which in turn increased the tensile properties and abrasion and aging resistance. The properties of the tertiary NR/SBR/ULDPE blend were investigated as well. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 650–660, 2001  相似文献   

15.
Blends of styrene–butadiene rubber (SBR) and natural rubber (NR) were prepared and their morphology, transport behavior, and dynamic mechanical and mechanical properties were studied. The transport behavior of SBR/NR blends was examined in an atmosphere of n‐alkanes in the temperature range of 25–60°C. Transport parameters such as diffusivity, sorptivity, and permeability were estimated. Network characterization was done using phantom and affine models. The effect of the blend ratio on the dynamic mechanical properties of SBR/NR blends was investigated at different temperatures. The storage modulus of the blend decreased with increase of the temperature. Attempts were made to correlate the properties with the morphology of the blend. To understand the stability of the membranes, mechanical testing was carried out for unswollen, swollen, and deswollen samples. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1280–1303, 2000  相似文献   

16.
This article studies the influence of the network structure on the activation energies of the α and β relaxations in vulcanized styrene butadiene rubber, SBR. A cure system based on sulphur and TBBS (N‐t‐butyl‐2‐benzothiazole sulfenamide) was used in the formulation of several compounds cured at 433 K. The activation energies were evaluated from internal friction (loss tangent) data of the compounds using an automated subresonant forced pendulum in a wide frequency range and between 80 K and 273 K. The internal friction data of the samples reveal two transitions, α and β, characterized by the temperatures Tα and Tβ, due to the glass transition and the phenyl group rotation of the copolymer, respectively. Although Tα increases at higher crosslink density, it shows also a dependence with the amount of polysulphide and monosulphide linkages present in the samples. The highest activation energy for this process is obtained for the samples with high crosslink density and 30% of monosulphides in this structure. In the case of the β‐relaxation, there is a pronounced change in the activation energy between the uncured and the cured samples. The type of structure formed during vulcanization has an important effect in the activation energy of the segmental mode‐process. In the case of the β‐process, the cis‐trans isomerization that takes place during vulcanization in the butadiene part of the SBR, might be the cause of conformational changes in the surrounding of the phenyl rings that affect the energy barrier associated to the phenyl rotation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The measurement of physical properties of thermoplastic natural rubber (TPNR) of NR–HDPE blends have been made at various compositions of high-density polyethylene (HDPE). The tensile properties and hardness of TPNR improve significantly with the addition of liquid natural rubber (LNR) to the blend. The degree of cross-linking also increases with increasing amount of LNR added. The LNR with molecular weight (Mw) of 50,000 and reactive terminals promotes cross-linking within the rubber phase and grafting of the polyethylene chains onto the rubber matrix system. The maximum stress and strain of the blends measured are about 7.5 MPa and 1000%, respectively. Dynamic mechanical analysis results indicate a single Tg on a tan δ trace at about ?50 and ?55°C for the two types of blends, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The vulcanization of natural rubber (NR)‐blended acrylonitrile–butadiene–styrene (ABS) was carried out with a phenolic curing agent by a melt‐mixing process. The NR compound was first prepared before blending with ABS. The effects of the phenolic curative contents (10, 15, and 20 phr) and blend proportions (NR/ABS ratio = 50 : 50, 60 : 40, and 70 : 30) on the mechanical, dynamic, thermal, and morphological properties of the vulcanized NR/ABS blends were investigated. The tensile strength and hardness of the blends increased with increasing ABS content, whereas the elongation at break decreased. The strength property resulting from the thermoplastic component and the vulcanized NR was an essential component for improving the elasticity of the blends. These blends showed a greater elastic response than the neat ABS. The thermal stability of the blends increased with increasing ABS component. Scanning electron micrographs of the blends showed a two‐phase morphology system. The vulcanized 60 : 40 NR/ABS blend with 15‐phr phenolic resin showed a uniform styrene‐co‐acrylonitrile phase dispersed in the vulcanized NR phase; it provided better dispersion between the NR and ABS phases, and this resulted in superior elastic properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42520.  相似文献   

19.
The Fourier transformed infrared (FTIR) spectroscopy on the rubber‐filler gel has been used as a tool for the quantitative characterization of the phase selective silica localization in styrene butadiene rubber (SBR)/natural rubber (NR) blends. The so‐called rubber‐layer L was introduced to describe the selective wetting behavior of the rubber phases to the filler. SBR/NR blends filled with silica were the focus of the experimental investigation. NR shows a higher wetting rate than SBR. Silane addition does not affect the wetting of NR but slowdowns the wetting of SBR. With increasing chamber temperature the value of the rubber‐layer L of all mixtures increases owing to the different thermal activated rubber‐filler bonding processes. Using the wetting concept the kinetics of silica localization in the phases of heterogeneous rubber blends was characterized. Because of the higher wetting rate of the NR component, in the first stage of mixing of NR/SBR blends more silica is found in the NR phase than in the SBR phase. In the next stage, silica is transferred from the NR phase to the SBR phase until the loosely bonded components of NR rubber‐layer are fully replaced by SBR molecules. POLYM. COMPOS., 31:1701–1711, 2010. © 2010 Society of Plastics Engineers.  相似文献   

20.
We investigated the influence of hydrophilic and hydrophobic imidazolium ionic liquids on the curing kinetic, mechanical, morphological and ionic conductivity properties of nitrile rubber composites. Two room temperature ionic liquids with a common cation—1‐ethyl‐3‐methylimidazolium thiocyanate (EMIM SCN; hydrophilic) and 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI; hydrophobic)—were used. Magnesium–aluminium layered double hydroxide (MgAl‐LDH; also known as hydrotalcite) was added to carboxylated acrylonitrile–butadiene rubber (XNBR) whereas fumed silica Aerosil 380 was used in acrylonitrile–butadiene rubber (NBR) as reinforcing fillers. NBR compounds were vulcanized with a conventional sulfur‐based crosslinking system whereas XNBR compounds were cured with MgAl‐LDH. The optimum cure time reduction and tensile properties improvement were obtained when both ionic liquids were added at 5 parts per hundred rubber (phr). The results revealed that EMIM SCN and EMIM TFSI induced an increase in the AC conductivity of nitrile rubber composites from 10?10 to 10?8 and to 10?7 S cm?1, respectively (at 15 phr ionic liquid concentration). The presence of ionic liquids in NBR slightly affected the glass transition temperature (Tg) whereas the presence of EMIM TFSI in XNBR contributed to a shift in Tg towards lower temperatures from ?23 to ?31 °C, at 15 phr loading, which can be attributed to the plasticizing behaviour of EMIM TFSI in the XNBR/MgAl‐LDH system. Dynamic mechanical analysis was also carried out and the related parameters, such as the mechanical loss factor and storage modulus, were determined. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号