首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(S)-2-(Ethyl propionate)-(O-ethyl xanthate) (X1) and the newly synthesized (S)-2-(ethyl isobutyrate)-(O-ethyl xanthate) (X2) were used as the reversible addition-fragmentation chain transfer (RAFT) agents for the radical polymerization of N-vinylpyrrolidone (NVP). The former showed the better chain transfer ability in the polymerization at 60 °C. Kinetics study with X1 shows the psuedo-first order kinetics upto 45% monomer conversion. Molecular weight (M n) of the resulted polymer increases linearly with increase in the monomer conversion upto around 45%. Polydispersity of the corresponding poly(NVP)s increase gradually from 1.2 to 1.9 with increase in the monomer conversion. Chain-end analysis of the resulted polymer by 1H NMR shows clearly that polymerization started with radical forming out of xanthate mediator. Living nature of the polymerization was confirmed from the successful homo chain extension experiment and also the hetero-chain extension experiment involving synthesis of poly(NVP)-b-polystyrene amphiphilic diblock copolymer.  相似文献   

2.
Azide-terminated xanthate RAFT agent (S)-2-(4-azidobutyl propionate)-(O-ethyl xanthate) has been synthesized and used for the controlled radical polymerization of N-vinylpyrrolidone (NVP). Kinetics study showed the pesudo first-order kinetics along with gradual increase in molecular weight (Mn) of the resulted polymer up to 69% conversion. Chain-end analysis of the resulted polymer by 1H NMR showed the presence of the fragments of xanthate mediator at both chain ends. Successful chain extension has also been performed via the click reaction of alkyne-terminated PNVP with azide-terminated PNVP. Moreover, fluorescence pyrene-tagged PNVP has successfully been made via the click reaction of alkyne-functionalized pyrene with azide-terminated PNVP.  相似文献   

3.
Two new alkyne‐terminated xanthate reversible addition‐fragmentation chain‐transfer (RAFT) agents: (S)‐2‐(Propynyl propionate)‐(O‐ethyl xanthate) (X3) and (S)‐2‐(Propynyl isobutyrate)‐(O‐ethyl xanthate) (X4) were synthesized and characterized and used for the controlled radical polymerization of N‐vinylpyrrolidone (NVP). X3 showed better chain transfer ability in the polymerization at 60°C. Molecular weight of the resulted polymer increased linearly with the increase in monomer loading. Kinetics study with X3 showed the pseudo‐first order kinetics up to 67% monomer conversion. Molecular weight (Mn) of the resulting polymer increased linearly with the increase in the monomer conversion up to around 67%. With the increase in the monomer conversion, polydispersity of the corresponding poly(NVP)s initially decreased from 1.34 to 1.32 and then increased gradually to 1.58. Chain‐end analysis of the resulting polymer by 1H‐NMR and FTIR showed clearly that polymerization started with radical forming out of xanthate RAFT agent. Living nature of the polymerization was also confirmed from the successful homo‐chain extension experiment and the hetero‐chain extension experiment involving synthesis of poly(NVP)‐b‐polystyrene amphiphilic diblock copolymer. Formed alkyne‐terminated poly(NVP) also allowed easy conjugation to azide‐terminated polystyrene by click chemistry to prepare well‐defined poly(NVP)‐b‐polystyrene block copolymers. Resulting polymers were characterized by GPC, 1H‐NMR, FTIR, and thermal study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Diethyl-dithiocarbamic acid 2-[4-(2-diethylthiocarbamoylsulfanyl-2-phenyl-acetyl)-2,5-dioxo-piperazin-1-yl]-2-oxo-1-phenyl-ethyl ester as a novel di-functional reversible addition–fragmentation chain transfer (RAFT) agent was synthesized based on 2,5-diketopiperazine. The RAFT agent was designed based on the propagating core (R group) approach and characterized by 1H NMR, 13C NMR, FT-IR, elemental analysis, and melting point technique. Then, ethyl methacrylate was synthesized via free radical and RAFT polymerizations. To investigate the effect of the RAFT agent on the kinetic of polymerization, molecular weight, and polydispersity index (PDI) of polymers and also monomer conversion were monitored. Also, synthesized polymers were characterized by 1H NMR, 13C NMR, FT-IR, and TGA. Characterization analyses of synthesized RAFT agent were consistent with the structure. NMR and FTIR analyses confirmed end group incorporation of RAFT agent into polymer structure. According to results, poly(ethyl methacrylate) with low PDI (1.14) was obtained. Kinetic study indicated well-controlled polymerization of ethyl methacrylate by synthesized RAFT agent. TGA results showed that RAFT agent could reduce termination reactions and so reduce head-to-head bonds and chain-end unsaturation by keeping the concentration of radicals low enough.  相似文献   

5.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc) was successfully performed at room temperature using 60Co γ-irradiation as the initiation source. Under the dose rate of 10 Gy/min irradiation, the polymerization proceeded smoothly and converted approximately 90% of the monomer within 7 h. The molecular weight distribution (Mw/Mn) remained narrow (Mw/Mn < 1.35) up to 90% conversion. Compared to AIBN-initiated RAFT polymerization at 60 °C, 60Co γ-irradiation-initiated RAFT polymerization is a technique that can better control the molecular weight, especially at high conversion. The 1H NMR spectra and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry confirmed that most of the chain ends of poly(VAc) (PVAc) from γ-irradiated RAFT polymerization were living and can be reactivated for chain-extension reactions. The microstructures of PVAc from 60Co γ-irradiated RAFT polymerization (almost head-to-tail addition) and AIBN-initiated RAFT polymerization (5% tail-to-tail addition) were different, as revealed by the 13C NMR spectra. For the first time, 60Co γ-irradiation was used as an initiation source for RAFT polymerization of VAc at room temperature.  相似文献   

6.
Ping Feng 《Polymer》2007,48(20):5859-5866
The light sensitive vinyl monomer with coumarin unit, 7-(4-(acryloyloxy)butoxy)coumarin (7AC), was synthesized. The reversible addition-fragmentation chain transfer (RAFT) polymerization of 7AC, initiated by 2,2′-azobisisobutyronitrile (AIBN), was carried out using 2-cyanoprop-2-yl dithiobenzoate (CPDB) as a RAFT agent in N,N-dimethylformamide (DMF) solution. The kinetics exhibited first-order relationship with respect to the monomer concentration. The molecular weight of the polymer increased linearly with the monomer conversion. The chain extension of poly(7-(4-(acryloyloxy)butoxy)coumarin) (P7AC) using styrene (St) as the second monomer demonstrated that the obtained polymers were almost “living”. The fluorescence intensity of P7AC increased with the molecular weight of P7AC and was stronger than that of the monomer. The obtained polymer had strong ultraviolet (UV) absorption at 322 nm. The molecular weights of the polymer had no effect on its ultraviolet absorption intensity. The coumarin structure existing in P7AC underwent [2 + 2] cycloaddition reaction (photodimerization) under UV irradiation in tetrahydrofuran (THF) solution, which can be further used to prepare small particles from the single polymer.  相似文献   

7.
A mathematical model was developed for batch and semiemulsion polymerizations of styrene in the presence of a xanthate‐based RAFT agent. Zero–one kinetics was employed along with population balance equations to predict monomer conversion, molecular weight (MWD), and particle size (PSD) distributions in the presence of xanthate‐based RAFT agents. The effects of the transfer agent (AR), surfactant, initiator, and temperature were investigated. Monomer conversion, MWD, and PSD were found to be strongly affected by monomer feed rate. The polymerization rate (Rp), number average molecular weight (Mn) and particle size (r) decreased with increasing AR. With increases in surfactant and initiator concentrations Rp increased, whereas with increase in temperature Mn decreased, Rp increased and r increased. In semibatch mode, Mn and r increased with increase in monomer flow rate. By feeding the RAFT agent along with the monomer (FM/FAR = NMo/NARo = 100), Mn attained a constant value proportional to monomer/RAFT molar ratio. The observed retardation in polymerization and growth rates is due to the exit and re‐entry of small radicals. Thus, chain extension was successfully achieved in semibatch mode. The simulations compared well with our experimental data, and the model was able to accurately predict monomer conversion, Mn, MWD, and PSD of polymer products. Our simulations and experimental results show that monomer feed rate is suitable for controlling the PSD, and the initial concentration and the feed rate of AR for controlling the MWD and PSD. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Different types of novel xanthates containing a vinyl ether moiety, S-benzyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 1) and S-1-(ethoxycarbonyl)ethyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 2) were synthesized. In particular, the Xanthate 2 enabled to design polyvinyl alcohol (PVA) stereoblock copolymer via the combination of living cationic vinyl polymerization and RAFT/MADIX polymerization. For cationic polymerization of isobutyl vinyl ether (IBVE) and tert-butyl vinyl ether (TBVE), the polymerizations were conducted under Xanthate 1-HCl adduct/SnCl4 and Xanthate 1 or 2-CF3COOH adduct/EtAlCl2 initiating system in the presence of ethyl acetate. Both systems proceeded in living polymerization fashion because the calculated Mn of both poly(IBVE) and poly(TBVE) matches with the Mn polymerized assuming that one polymer chain is formed per one molecule of the Xanthate 1 or 2. The resulting poly(TBVE) had a high number average α-end functionality as determined by MALDI-TOF-MS spectrometry. Xanthate 2 is more efficient for the following RAFT/MADIX polymerization of vinyl acetate (VAc). The RAFT/MADIX polymerization of vinyl acetate (VAc) using azobis(isobutyronitrile) (AIBN) at 60 °C was conducted using either poly(IBVE) or poly(TBVE) macro-CTA. The poly(TBVE) macro-CTAs synthesized from the Xanthate 2 were able to polymerize VAc smoothly via RAFT/MADIX polymerization, to prepare well-defined diblock copolymer, poly(TBVE)-b-poly(VAc). The resulting block copolymer was then hydrolyzed using KOH in methanol and followed by acid hydrolysis using HBr gas bubbling. The resulting polymer is inherently stereoblock like copolymer, isotactic rich PVA-b-atactic PVA (iPVA-b-aPVA). From the DSC measurement, the iPVA-b-aPVA has one glass transition at 69.5 °C and two melting points according to iPVA and aPVA at 237.9 and 198.1 °C, respectively. Thus, it can be suggested that the obtained PVA has two different geometries by the combination of living cationic polymerization and RAFT/MADIX polymerization.  相似文献   

9.
Two novel dithiocarbamates [2‐Y‐benzoimidazole‐1‐carbodithioic acid benzyl esters: Y = methyl (1b) or phenyl (1c)] were synthesized and successfully used in the reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene in bulk with thermal initiation. The effects of the temperatures and concentration ratios of the styrene and RAFT agents on the polymerization were investigated. The results showed that the polymerization of styrene could be well controlled in the presence of 1b or 1c. The linear relationships between ln([M]0/[M]) and the polymerization time (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) indicated that the polymerizations were first‐order reactions with respect to the monomer concentration. The molecular weights increased linearly with the monomer conversion and were close to the theoretical values. The molecular weight distributions [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] were very narrow from 5.3% conversion up to 94% conversion (Mw/Mn < 1.3). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 560–564, 2006  相似文献   

10.
Kejian Bian 《Polymer》2006,47(16):5744-5753
2-(Dimethylamino)ethyl acrylate (DMAEA) was grafted from the surface of alkoxyamine-functionalized crosslinked poly(styrene-co-chloromethylstyrene) microspheres by nitroxide-mediated radical polymerization (NMRP). Latex particles (∼60 nm diameter) bearing chloromethyl groups were synthesized by emulsion polymerization. N-tert-butyl-N-(1-diethyl phosphono-2,2-dimethylpropyl)nitroxide (SG1) was then immobilized on the particle surface. Microspheres grafted with the homopolymer pDMAEA, as well as block copolymers poly(styrene-b-DMAEA) and poly(butyl acrylate-b-DMAEA) were prepared by surface-initiated NMRP in N,N-dimethylformamide at 112 °C, with the addition of free SG1 to ensure that control is maintained. Particle size increases with number average molecular weight (Mn) of untethered polymers. The polymerizations exhibit linear first order kinetic plots and slight curvature of evolution of Mn with conversion. The functional microspheres were analyzed by infrared spectroscopy, transmission electron microscopy and thermal analysis, as well as their dispersibility in water; the results support the formation of surface-grafted pDMAEA on the microspheres.  相似文献   

11.
N-[2-(8-heptadecenyl)-4,5-dihydro-1H-imidazole-1-ethyl]-2-bromoisobutyramide (IEB) was synthesized and characterized by elemental analysis, FT-IR, and 1H NMR. It had been successfully used as a bidentate initiator for the ATRP of methyl methacrylate with CuBr/2,2′-bipyridine as the catalyst, and N,N-dimethylformamide as the solvent at 70 °C. The kinetics was first order in monomer and the number-average molecular weight of the polymer increased linearly with the monomer conversion, indicating the ‘living’/controlled nature of the polymerization. The polymerization reached high conversions producing polymers with a low molecular weight distribution ( M w/M n = 1.319). The obtained poly(methylmethacrylate) (PMMA) functionalized with 2-(8-heptadecenyl)-4,5-dihydro-1H-imidazoleyl and ω-Br as the end groups were characterized by FT-IR spectroscopy. They can be used as macroinitiators for chain extension reaction. Then, PMMA coatings were grafted from iron substrates by surface-initiated ATRP from a surface-bound IEB initiator. The EIS measurements confirmed the successful grafting of the polymer coatings. Greatly improved short-term anticorrosive properties for PMMA-modified electrodes were demonstrated by substantially increased resistance of the film for a period of 24 h as compared to bare iron.  相似文献   

12.
Xiaoyan Wang 《Polymer》2005,46(10):3515-3521
The RAFT polymerization of styrene in bulk was carried out using tetraethylthiuram disulfide (TETD) as an initiator and 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as a chain transfer agent at different temperatures. The results of the polymerization showed that TETD could initiate the RAFT polymerization of styrene in the living way. The kinetics of the polymerization showed first order. The molecular weights of the polymers increased linearly with conversions and were close to the theoretical values (Mn,th). The polydispersities of the polymers remained relatively narrow (<1.3). The structure of the polymer was characterized by 1H NMR. The result showed that there were moieties of CPDN and TETD attained at the end of the polymer. Using these double functional end capped polymers, the chain-extension experiments were successfully carried out not only in the conventional RAFT polymerization way, but also under UV irradiation.  相似文献   

13.
A new monomer, 1,2,3‐tris(ethoxycarbonyl)‐2‐propyl acrylate (TPA), was synthesized by reaction of acryloyl chloride and triethyl citrate. The homopolymer of TPA and its copolymers with acrylic acid (AA), vinyl acetate (VAc) and maleic anhydride (MAH) were prepared by polymerization using lauroyl peroxide (LPO) at 70 °C for 24 h. The structures of TPA and its polymers were identified by FTIR, 1H NMR, 13C NMR spectroscopies, and elemental analysis. The number average molecular weights and polydispersity indices of the synthesized polymers determined by GPC were in the range 4200–23 000 g mol?1 and 1.1–2.1, respectively. The IC50 values of the synthesized samples against cancer cell lines were greater than those of 5‐fluorouracil (5‐FU). The percentage inhibition values of SV40 DNA replication were 82.2 for TPA, 34.3 for poly (TPA), 81.9 for poly(TPA‐co‐AA), 82.0 for poly(TPA‐co‐VAc), 35.6 for poly(TPA‐co‐MAH) and 12.7 for 5‐FU. The inhibitions of SV40 DNA replication and antiangiogenesis for the synthesized TPA and its polymers are much greater than those of the control. © 2001 Society of Chemical Industry  相似文献   

14.
Summary Poly(vinyl acetate) and poly(vinyl propionate) star polymers with four arms were produced via reversible addition fragmentation chain transfer (RAFT) polymerization, employing a tetra-functional xanthate as the RAFT agent, in which the stabilizing groups are linked to the core. These novel star-like RAFT agents induced living/controlled behavior in both the vinyl acetate polymerization at 60 °C and in the vinyl propionate polymerization at 90 °C, respectively, leading to star polymers with minimum polydispersities of 1.2 and maximum apparent number average molecular weights of about 50,000 g·mol-1. The microstructure of the star polymers was confirmed by electrospray ionization mass spectrometry.  相似文献   

15.
Poly(N-vinylcarbazole) (PNVK) is one of the extensively studied photoconductive polymers because of its wide ranges of applications. Through the reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthates (RAFT/MADIX) polymerizations, in this study we investigated the syntheses of PNVK-based block copolymers (BCPs) with styrene (St) and methyl methacrylate (MMA). A variety of difunctional haloester-xanthate inifers were prepared and subjected to sequential polymerizations through RAFT and ATRP. In the presence of small amounts of bromoxanthate inifers, the 1H NMR spectra showed nearly complete consumption of the NVK monomer, but without formation of PNVK. The bromoxanthate inifer could act as acidic moieties that protonated the highly basic NVK monomer. Through 1H NMR and MALDI-TOF spectroscopic analyses, the structures of byproducts were indentified and a plausible mechanism for their formation was proposed. Alternatively, RAFT/MADIX polymerizations of NVK with two chloroxanthate inifers S-[1-methyl-4-(6-chloropropionate)ethyl acetate] O-ethyl dithiocarbonate and S-[1-methyl-4-(6-chloroisobutyrate)ethyl acetate] O-ethyl dithiocarbonate) provided first-order kinetic plots and well-controlled PNVK-Cl MIs (Mn ≈ 6000–40,000; Mw/Mn < 1.35). Using a suitable ATRP-initiating groups and optimization of the reaction conditions, the BCPs PNVK-b-PSt (Mn ≈ 4900–12,800; Mw/Mn < 1.5) and PNVK-b-PMMA (Mn ≈ 46,000–100,000; Mw/Mn < 1.35) were obtained.  相似文献   

16.
Reversible addition fragmentation chain transfer (RAFT) bulk polymerizations of 3-[tris(trimethylsilyloxy)silyl] propyl methacrylate (TRIS) have been carried out at 60 °C, employing cumyl dithiobenzoate (CDB) and 2-cyanoprop-2-yl dithiobenzoate (CPDB) as mediating agents at concentrations ranging from 5.0×10−3 to 2.0×10−2 mol l−1. The monomer conversion vs. time evolution was followed via dilatometry and 1H NMR spectroscopy. The CDB mediated polymerization displays RAFT agent concentration dependent inhibition and rate retardation phenomena, whereas the CPDB mediated polymerization process is less susceptible to rate retardation and inhibition effects. The different behavior of CDB and CPDB in TRIS polymerization is most likely due to the increased stability of the intermediate macroRAFT radicals in the CDB mediated process. The generated RAFT polymers were analyzed via size exclusion chromatography indicating linear macromolecular growth with respect to monomer conversion and low polydispersities (PDI<1.15) up to high monomer to polymer conversion (>90%).  相似文献   

17.
A tertierbutylphenoxy group containing methacrylate based monomer 2-(4-tert-butylphenoxy)-2-oxo-ethyl methacrylate (TBPOEMA) was synthesized by reacting 4-tertierbutylphenyl chloroacetate (TBPClAcO) with sodium methacrylate in acetonitrile. TBPClAcO was prepared by reacting tertierbutylphenol dissolved in benzene with chloroacetylchloride. The free-radical-initiated copolymerization of TBPOEMA, with methyl methacrylate (MMA) and styrene (ST) was carried out in dimethylsulphoxide (DMSO) solution at 65°C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer TBPOEMA and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition obtained from the 1H-NMR spectra led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Finemann–Ross and Kelen–Tüdös linear methods and the Behnken nonlinear least-squares method. The analysis of reactivity ratios revealed that MMA and ST are more reactive than TBPOEMA, and copolymers formed are statistical in nature. The molecular weights w and n) and polydispersity index of the polymers were determined using gel permation chromagtography. Thermogravimetric analysis of the polymers reveal that the thermal stability of the copolymers increases with an increase in the mole fraction of TBPOEMA in the copolymers. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of TBPOEMA in the copolymers. The apparent thermal decomposition activation energies (E d) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

18.
黄志辉  包永忠  潘鹏举 《化工学报》2017,68(6):2569-2576
合成了含黄原酸酯端基的聚乙二醇(X-PEG-X)大分子链转移剂,并以其为可逆加成-断裂链转移试剂调控氯乙烯(VC)溶液和悬浮聚合,合成聚氯乙烯-b-聚乙二醇-b-聚氯乙烯(PVC-b-PEG-b-PVC)三嵌段共聚物。X-PEG-X调控VC溶液聚合得到的共聚物的分子量随聚合时间增加而增大,分子量分布指数小于1.65。X-PEG-X具有水/油两相分配和可显著降低水/油界面张力的特性,以X-PEG-X为链转移剂和分散剂,通过自稳定悬浮聚合也可合成PVC-b-PEG-b-PVC共聚物,共聚物颗粒无皮膜结构,分子量随聚合时间增加而增大;由于VC悬浮聚合具有聚合物富相和单体富相两相聚合特性,共聚物分子量分布指数略大于溶液聚合共聚物。通过乙酸乙烯酯(VAc)扩链反应进一步证实了PVC-b-PEG-b-PVC的“活性”,并合成PVAc-b-PVC-b-PEG-b-PVC-b-PVAc共聚物。水接触角测试表明PVC-b-PEG-b-PVC的亲水性优于PVC。  相似文献   

19.
Thermal polymerization of methyl (meth)acrylate (MMA) was carried out using 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN) and cumyl dithionaphthalenoate (CDN) as chain transfer agents. The kinetic study showed the existence of induction period and rate retardation, especially in the CDN mediated systems. The molecular weights of the polymers increased linearly with the monomer conversion, and the molecular weight distributions (Mw/Mns) of the polymers were relatively narrow up to high conversions. The maximum number-average molecular weights (Mns) reached to 351?900 g/mol (Mw/Mn = 1.47) and 442?400 g/mol (Mw/Mn = 1.29) in the systems mediated by CPDN and CDN, respectively. Chain-extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA-block-polystyrene (PMMA-b-PSt) copolymer with controlled structure and narrow Mw/Mn. Thermal polymerization of methyl acrylate (MA) in the presence of CPDN, or benzyl (2-phenyl)-1-imidazolecarbodithioate (BPIC) also demonstrated “living”/controlled features with the experimented maximum molecular weight 312?500 g/mol (Mw/Mn = 1.57). The possible initiation mechanism of the thermal polymerization was discussed.  相似文献   

20.
The authors describe a facial development of pH-responsive hydrogels composed of 2-(dimethylamino)ethylmethacrylate and 2-hydroxyethylacrylate via free-radical polymerization at 29°C. The hydrogels were characterized by FTIR, SEM, and XRD studies. The diffusional exponent (n), hydrogel network parameters such as average molecular weight between crosslinks (Mc), and polymer-solvent interaction (χ) were calculated by using swelling data. The hydrogels were encapsulated with 5-fluorouracil, the in vitro release data indicated that the maximum drug release was significantly achieved in pH 1.2 rather than in pH 7.4 and it was enhanced up to 30 h. These results suggested that the gels are highly useful for anticancer drug delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号