首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alginate and gelatin blend fibers were prepared by spinning their solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2 and ethanol. The structure and properties of the blend fibers were studied with the aid of infrared spectra, scanning electron micrography, X‐ray diffraction, and thermogravimetric analysis. Mechanical properties and water‐retention properties were measured. The best values of the tensile strength and breaking elongation of blend fibers were obtained when gelatin content was 30 wt %. The water‐retention values of blend fibers increase as the amount of gelatin is raised. The structural analysis indicated that there was strong interaction and good miscibility between alginate and gelatin molecules resulted from intermolecular hydrogen bonds. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1625–1629, 2005  相似文献   

2.
Chitosan and poly(vinyl alcohol) blend fibers were prepared by spinning their solution through a viscose‐type spinneret at 25°C into a coagulating bath containing aqueous NaOH and ethanol. The influence of coagulation solution composition on the spinning performance was discussed, and the intermolecular interactions of blend fibers were studied by infrared analysis (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM) and by measurements of mechanical properties and water‐retention properties. The results demonstrated that the water‐retention properties and mechanical properties of the blend fibers increase due to the presence of PVA in the chitosan substract, and the mechanical strength of the blends is also related to PVA content and the degree of deacetylation of chitosan. The best mechanical strength values of the blend fibers, 1.82 cN/d (dry state) and 0.81 cN/d (wet state), were obtained when PVA content was 20 wt % and the degree of deacetylation of chitosan was 90.2%. The strength of the blend fibers, especially wet tenacity could be improved further by crosslinking with glutaraldehyde. The water‐retention values (WRV) of the blend fibers were between 170 and 241%, obviously higher than pure chitosan fiber (120%). The structure analysis indicated that there are strong interaction and good miscibility between chitosan and poly(vinyl alcohol) molecular resulted from intermolecular hydrogen bonds. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2558–2565, 2001  相似文献   

3.
Alginate/ N‐Succinyl‐chitosan (SCS) blend fibers, prepared by spinning their mixture solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR) and X‐ray diffraction (XRD). The results indicated a good miscibility between alginate and SCS, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when SCS content was 30 wt %. The wet tensile strength decreased with the increase of SCS content, and the wet breaking elongation achieved maximum value when the SCS content was 30 wt %. Introduction of SCS in the blend fiber improved water‐retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibers with aqueous solution of silver nitrate, exhibited good antibacterial activity to Staphylococcus aureus. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The blend membranes were satisfactorily prepared by coagulating a mixture of O‐carboxymethylated chitosan (CM‐chitosan) and alginate in aqueous solution with 5 wt % CaCl2, and then by treating with 1 wt % HCl aqueous solution. Their structure and miscibility were characterized by scanning electron micrograph, X‐ray diffraction, infrared spectra, differential thermal analysis, and atomic absorption spectrophotometer. The results indicated that the blends were miscible, when the weight ratio of CM‐chitosan to alginate was in the range from 1 : 1 to 1 : 5. The polymers interpenetration including a Ca2+ crosslinked bridge occurred in the blend membrane, and leads to high separation factor for pervaporation separation of alcohol/water and low permeation. The tensile strength in the wet state (σb = 192 kg cm−2 for CM‐chitosan/alginate 1 : 1) and thermostability of the blend membranes were significantly superior to that of alginic acid membrane, and cellulose/alginate blend membranes, owing to a strong electrostatic interaction caused by —NH2 groups of CM‐chitosan with —COOH groups of algic acid. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 610–616, 2000  相似文献   

5.
Sodium alginate/chitosan (SA/CS) two ply composite membranes were prepared by casting and solvent evaporation technique. NaHCO3 was used as a porogen additive to form pores in the interior of the composite membranes and glycerol was introduced as a plasticizer. The water uptake capacity, mechanical strength, oxygen permeation property, and in vitro cytotoxicity were evaluated to test the feasibility to utilize the composite membranes for wound dressing. The average pore size, water uptake capacity, and oxygen permeation property of the composite membranes could be adjusted by the ratio of NaHCO3 in the SA solution. The SA/CS two ply composite membranes showed high water uptake capacity, suitable mechanical strength, excellent oxygen permeability, and good biocompatible. It indicates that the SA/CS two ply composite membranes are suitable for wound dressing application. It provides a simple but promising platform to fabricate wound dressing using natural polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Silk fibroin/alginate blend sponges were examined through IR spectroscopy, X‐ray diffractometry, and differential scanning calorimetry to determine the structural changes of silk fibroin. The effects of fibroin/alginate blend ratios on the physical and mechanical properties were investigated to discover the feasibility of using these blend sponges as biomedical materials such as wound dressings. The compressive modulus of silk fibroin was increased up to 30 kPa, from 7.1 kPa, by blending with alginate. Thermal crystallization behavior of fibroin induced by heat treatment was restricted by blending with alginate. In spite of that, the structural characteristics of fibroin were not changed by incorporation with alginate. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2174–2179, 2004  相似文献   

7.
Summary  The thermal behavior of several chitosan/alginate /drug microparticle formulations containing ciprofloxacin, ibuprofen, ketoprofen or tannic acid was investigated by thermogravimetry in inert atmosphere in the temperature range of 25 – 900oC. The chemical composition and the method used for drug incorporation influenced the thermal stability of the products. It was found that the entrapment of the drug in chitosan, alginate or chitosan/alginate complex modifies the degradation mechanism introducing new degradation steps by comparison with raw polymers. The activation energy for the main degradation step is also changed.  相似文献   

8.
The aim of this study is preparation and characterization of alginate/chitosan sponges including a model antibiotic (i.e., ciprofloxacin) to use in wound and/or burn treatment. Sponges were prepared firstly by the gelation of sodium alginate followed by lyophilization, crosslinking with calcium chloride, and finally coating with chitosan. Sponges were characterized with respect to morphology, water uptake, in vitro drug release behavior, and antimicrobial activity. Investigated and evaluated parameters in all of these studies were selected as the concentration of calcium chloride, alginate viscosity, drug content, and molecular weight of chitosan. Drug release and water uptake were found to be greatly influenced by these parameters. Water uptake and drug release rate were decreased by increasing the crosslinking density, chitosan molecular weight, and alginate viscosity. In the antimicrobial tests, it was obtained that the antimicrobial activity is directly proportional with the release rates and water uptake. Morphological studies showed a highly porous structure with interconnected pores. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1602–1609, 2006  相似文献   

9.
将含固体质量分数为5%的海藻酸钠纺丝原液与纳米二氧化钛(TiO2)水分散液均匀混合,制得海藻酸钠/纳米TiO2混合纺丝原液,采用湿法纺丝,通过氯化钙凝固浴,经拉伸、水洗,制备了海藻酸钙/纳米TiO2共混纤维,研究了纳米TiO2含量对共混纤维结构及性能的影响。结果表明:纳米TiO2的加入,提高了共混纤维的力学性能;加入质量分数为0.5%的纳米TiO2,海藻酸钙大分子链上的红外特征吸收峰峰形明显变宽,共混纤维的力学性能最佳,断裂强度为2.93 cN/dtex,断裂伸长率为7.34%,优于海藻酸钙纤维;添加纳米TiO2质量分数为3%时,纳米TiO2在共混纤维中仍能较好的分散,且纤维表面光滑。加入纳米TiO2后,共混纤维的热稳定性提高。  相似文献   

10.
Nano‐microstructured porous carbon composite fibers (Fe2O3@C/FeO@C/Fe@C) were synthesized by the thermal decomposition of ferrum alginate fibers. The ferrum alginate fiber precursors were prepared by wet spinning, and calcined at 300–1000°C in high purity nitrogen. The resulting composite fibers consist of carbon coated Fe2O3/FeO/Fe nanoparticles and porous carbon fibers. All the prepared nanostructures were investigated using thermal gravimetry, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscope (TEM), and nitrogen adsorption–desorption isotherm. The results show that there are five stages in the decomposition process of the ferrum alginate fibers. Transitions between the five stages are affected by the decomposition temperature. XRD results show that maghemite (Fe2O3), wüstite (FeO), martensite (Fe) nanoparticles were formed at 300–500°C, 600–700°C, 800–1000°C, respectively. Scanning electron microscopy and TEM results indicate that the composite fibers consist of nanoparticles and porous carbon. The diameter of the nanosized particles increased from 100 to 500 nm with increasing reaction temperature. The nitrogen adsorption–desorption results also show that the composite fibers have a micro‐ and mesoporous structure. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
聚乙烯醇/水滑石共混纤维的制备及其性能研究   总被引:1,自引:0,他引:1  
采用凝胶纺丝法制备聚乙烯醇/水滑石(PVA/HT)共混纤维。通过扫描电镜(SEM)观察水滑石在PVA/HT共混纤维中的分散状况和共混纤维的表面形态。从傅里叶变换红外光谱(FT-IR)可以看出HT和PVA之间存在明显的氢键作用;热重分析(TG)测试表明水滑石的加入可以有效提高PVA的热性能;加入适量的HT可以提高PVA纤维的断裂强度;随着HT含量的增加,PVA/HT共混纤维的最大拉伸倍数下降且表面易产生缺陷。  相似文献   

12.
Microspheres were prepared from carboxymethylated chitosan (CM‐chitosan) and alginate by emulsion phase separation. Their structure and morphology were characterized with IR spectroscopy and scanning electron microscopy. Bovine serum albumin (BSA) was encapsulated in the microspheres to test the release behavior. The swelling behavior, encapsulation efficiency, and release behavior of BSA from the microspheres at different pHs and with a pH‐gradient condition were investigated. The BSA encapsulation efficiency was calculated to be 80%. The degree of swelling of the microspheres without BSA loaded at pH 7.2 was much higher than that at pH 1.0. The encapsulated BSA was quickly released in a Tris–HCl buffer (pH 7.2), whereas a small amount of BSA was released under acid conditions (pH 1.0) because of the strong electrostatic interaction between ? NH2 groups of CM‐chitosan and ? COOH groups of alginic acid and a dense structure caused by a Ca2+ crosslinked bridge. For the simulation of the processing of the drug under the conditions of the intestine, the microspheres were tested in a pH‐gradient medium, in which an acceleration of the release occurred at pH 7.4 after a lag time at a low pH (5.8–6.8). At pH 7.4, a large amount of BSA was released from the microspheres in a short time because of the rapid swelling of the microspheres. However, the release only depended on the diffusion of BSA at relatively low pHs, this resulted in a relatively low release. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 878–882, 2004  相似文献   

13.
Solution miscibility of chitosan/polyethylene glycol fumarate blends dissolved in acetate buffer solution was investigated in different blend compositions by viscosity, density, and refractive index measurement techniques at 30, 40, and 50°C. In order to quantify the miscibility of the polymer pair, degree of miscibility was studied by means of two criteria known as interaction parameters i.e., μ and α. On the basis of the sign convention involved in these criteria, these values revealed that the blend solution was miscible when the chitosan content was more than 80% (w/w) of the composition. The results were confirmed by density, and refractive index measurements. Furthermore, the results showed that the miscibility window of chitosan/polyethylene glycol fumarate blends was independent with respect to the changes in solution temperature. Therefore, these results suggested due to intermolecular hydrogen‐bonding interaction between amino and hydroxy groups of chitosan and hydroxy groups of polyethylene glycol fumarate which play an important role in the formation of miscible phase. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
将不同质量比的聚乙烯醇(PVA)和壳聚糖(CS)溶于甲酸中配制成共混溶液进行静电纺丝,得到PVA/CS共混纤维毡。对纤维毡进行原子力显微镜(AFM)表征、红外光谱分析和吸水性能测试。结果表明:共混溶液中PVA质量分数为8%,CS质量分数为4%时,静电纺丝效果较好,纤维光滑平直,平均直径为307 nm,;红外光谱分析表明,PVA和CS共混时,大分子之间产生了较强的氢键作用,CS原有的结晶结构在一定程度上被破坏;PVA/CS共混纤维毡的吸水量和吸水速率都小于PVA纤维毡。  相似文献   

15.
Alginate and soy protein isolate blend fibers were prepared by spinning their solution through a viscose‐type spinneret into a novel coagulating bath containing aqueous CaCl2, HCl, and ethanol. The structures and properties of the fibers were studied with the aids of infrared spectra (IR), X‐ray diffraction (XRD), and scanning electron micrograph (SEM). Mechanical properties and water‐retention properties were measured. And with the sample of AS1 fiber (soy protein isolate weight content was 10%), the effects of the composition of the novel coagulating bath were also studied. The best values of the tensile strength of AS1 were 14.1 cN/tex in the dry state and 3.46 cN/tex in the wet state, respectively. Both the dry state and wet state breaking elongation were also having the best value 20.71% and 56.7% with AS1. Mechanical properties of the AS1 enhanced with the CaCl2 content increased in the coagulating bath. When the HCl content was 1%, the mechanical property of the fiber was best. Ethanol in the coagulating bath increased the wet mechanical properties of the fiber by 41.2% (tensile strength) and 45.1% (breaking elongation) when the ethanol weight content in the coagulating bath was 50%; but it had little effect on the dry mechanical properties. And the water‐retention value (WRV) of blend fibers decreased as the amount of soy protein isolate was raised. The structure analysis indicated that there were strong interaction and a certain level of miscibility between alginate and soy protein isolate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 425–431, 2006  相似文献   

16.
Chitosan scaffolds have gained much attention in tissue engineering. However, brittleness and low biodegradability limit scaffolds application, especially in use as guided tissue regeneration membranes (GTRm) in surgical operations. The first objective of this work is to improve the brittleness of the chitosan membrane, which is not desired for use via adding polyethylene glycol (PEG) to chitosan, and the second objective is to accelerate the degradation rate by blending gelatin with the binary chitosan‐PEG mixture. The addition of PEG softened the blend membrane in vision and in touch. The tensile compliant increased from 7.87 × 10?3 (MPa?1) for chitosan membrane to 3.63 × 10?1 (MPa?1) for chitosan‐PEG‐gelatin (CPG) membrane. Degradation results in vitro indicated that CPG membrane degraded faster and weight loss increased more significantly than chitosan membrane and the lowest tensile strength of CPG membrane could meet the requirement of the application. CPG membrane showed significant improvement in degradation and flexibility in comparison with the chitosan membrane. Cell adhesion, viability, and proliferation onto the external surface of CPG membrane with C2C12 cell had been evaluated in vitro and quantified by a methyl thiazolyl tetrazolium (MTT) reduction assay. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Submicrometer fibers of poly(vinyl alcohol) (PVA) and chitosan oligosaccharide [COS; i.e., (1→4)‐2‐amino‐2‐deoxy‐β‐D ‐glucose] were prepared by an electrospinning method with aqueous solutions with polymer concentrations of 7.5–15 wt %. Scanning electron microscopy, Fourier transform infrared, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis were used to characterize the morphology and properties of the PVA/COS fibers. The PVA/COS mass ratio, the total polymer concentration, and processing parameters such as the applied voltage and capillary‐to‐collector distance played important roles in controlling the fiber morphology. Fourier transform infrared and X‐ray diffraction data demonstrated that there were possibly hydrogen bonds between COS and PVA molecules that weakened the interactions in COS and improved the electrospinnability of PVA/COS. Moreover, with a higher percentage of COS in the PVA/COS blend fibers, superior thermal stability could be obtained. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Blends films based on different ratios of concentrated aqueous solutions of chitosan (CS) and sodium alginate (AG) in the presence of 1% of glutaraldehyde, as a cross‐linking agent for chitosan, were prepared by solution casting and then exposed to gamma irradiation. The formed blends were characterized by IR spectroscopic analysis, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The uptake‐release properties of CS/AG blends, taking ketoprofen as an example for drug, were also investigated. DSC thermograms of CS/AG blends revealed good miscibility was sustained between CS and AG. The water uptake and gel content of CS/AG blends was found to decrease by increasing the ratio of AG in the initial solution. The IR spectra indicated the formation of cross‐linking and hydrogen bonding, while the TGA study showed that the CS/AG blends displayed higher thermal stability than pure CS polymer. Based on Fick's law, it was demonstrated that the main parameters affecting the release of ketoprofen drug from the CS/AG blend hydrogels were composition and pH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
采用RT-2000毛细管流变仪,研究了海藻酸钠(SAL)/羧甲基壳聚糖(CMCS)纺丝溶液的流变性能。结果表明:SAL/CMCS纺丝溶液是切力变稀型流体,随着剪切速率(γ)的增加,纺丝溶液的表观粘度(η_a)下降;随着纺丝液中CMCS含量的增加,SAL/CMCS纺丝溶液的η_a和结构粘度指数(△η)下降,非牛顿指数(n)增大;随着纺丝液温度的升高,SAL/CMCS纺丝溶液的η_a和△η下降,n增大。纺丝过程中应控制SAL/CMCS纺丝溶液的温度为35℃,纺丝溶液中CMCS质量分数为15%较适宜。  相似文献   

20.
Chitosan (CS) fibers have been applied in various fields due to their biocompatibility, biodegradability, and antibacterial properties. However, weak mechanical properties remain as obstacles to further applications. Silk nanofibrils (SNFs) extracted from natural silk fibroin fibers preserve outstanding mechanical properties at the nanoscale, which are expected to impact structural programming and mechanical reinforcement for CS fibers. In this study, wet-spun CS/SNFs composite fibers were continuously collected from NaOH/ethanol coagulation. Scanning electron microscope (SEM) results showed that SNFs were uniformly distributed in the CS matrix, and obvious orientation was observed when the mass ratio of SNF/CS was 75/100. Tensile tests showed that the introduction of SNFs significantly enhanced the mechanical properties of CS fibers when the mass ratio of SNF/CS was more than 25/100. With the increasing of SNF content, the tensile strength gradually increased, and the tensile strength and modulus could be increased 2.9 times and 3.5 times, respectively, when 100% SNF was added. The improvement of mechanical properties was partially attributed to hydrogen bonding between SNF filaments and CS, which was confirmed by FTIR and XRD results. This study provides a facile and eco-friendly method to spin CS fibers with enhanced mechanical properties and a hierarchical structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号