首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxies toughened with two reactive liquid rubbers, an epoxy-terminated butadiene acrylonitrile rubber (ETBN) and an amino-terminated butadiene acrylonitrile rubber (ATBN), were prepared and studied in terms of their structure property relationships. A two-phase structure was formed, consisting of spherical rubber particles dispersed in an epoxy matrix. A broad distribution of rubber particles was observed in all the materials with most of the particles ranging in size from 1 to 4 μm, but some particles exceeding 20 μm were also found. Impact strength, plane strain fracture toughness (KIC), and fracture energy (GIC) were increased, while Young's modulus and yield strength decreased slightly with increasing rubber content and volume fraction of the dispersed phase. Both GIC and KIC were found to increase with increasing apparent molecular weight between crosslinks and decreasing yield strength. The increased size of the plastic zone at the crack tip associated with decreasing yield strength could be the cause of the increased toughness. An ATBN-toughened system containing the greatest amount of epoxy sub-inclusion in the rubbery phase demonstrated the best fracture toughness in this series. In the present systems, rubber-enhanced shear deformation of the matrix is considered to be the major toughening mechanism. Curing conditions and the miscibility between the liquid rubber and the epoxy resin determine the phase morphology of the resulting two-phase systems. Kerner's equation successfully describes the modulus dependence on volume fraction for the two-phase epoxy materials.  相似文献   

2.
Effect of loading rate on toughness characteristics of hybrid rubber-modified epoxy was investigated. Epoxy was modified by amine-terminated butadiene acrylonitrile (ATBN) and recycled tire. Samples were tested at various loading rates of 1–1000 mm/min. Fracture toughness measurements revealed synergistic toughening in hybrid system at low loading rates (1–10 mm/min); hybrid system exhibited higher fracture toughness value in comparison with the ATBN-modified resin with same modifier content. However, synergistic toughening was eliminated by increasing the loading rate. At higher loading rates (10–1000), the fracture toughness of hybrid system decreased gradually to the level lower than that of ATBN-modified epoxy. Fractography of the damage zones showed the toughening mechanisms of ATBN-modified system was less affected by increasing the loading rate compared to that of hybrid system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The objective of this research is to investigate the feasibility of using surface treated recycled rubber particles for toughening of epoxy polymers. These particles are obtained through grinding of scrap tires followed by oxidizing the surface of the particles in a reactive gas atmosphere. Surface treated recycled rubber particles with a nominal particle size of approximately 75 μm and a commonly used reactive liquid elastomer, CTBN, have been incorporated in a DGEBA epoxy resin. It has been shown that the recycled rubber particles are not as effective as CTBN in toughening of the epoxy matrix. However, blending of the two modifiers results in a synergistic toughening. Microscopy reveals that, when used alone, recycled rubber particles simply act as large stress concentrators and modestly contribute to toughening via crack deflection and microcracking. In the presence of micron size CTBN particles, which cavitate and induce massive shear yielding in the matrix, however, the recycled particles “stretch” the plastic deformation to distances far from the crack tip. This mechanism causes plastic zone branching and provides an unexpectedly high fracture toughness value. This study, therefore, provides a practical approach for manufacturing engineering polymer blends utilizing the surface modified recycled rubber particles.  相似文献   

4.
Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.  相似文献   

5.
The fracture behavior of a bisphenol A diglycidylether (DGEBA) epoxy, Araldite F, modified using carboxyl‐terminated copolymer of butadiene and acrylonitrile (CTBN) rubber up to 30 wt%, is studied at various crosshead rates. Fracture toughness, KIC, measured using compact tension (CT) specimens, is significantly improved by adding rubber to the pure epoxy. Dynamic mechanical analysis (DMA) was applied to analyze dissolution behavior of the epoxy resin and rubber, and their effects on the fracture toughness and toughening mechanisms of the modified epoxies were investigated. Scanning electron microscopy (SEM) observation and DMA results show that epoxy resides in rubber‐rich domains and the structure of the rubber‐rich domains changes with variation of the rubber content. Existence of an optimum rubber content for toughening the epoxy resin is ascribed to coherent contributions from the epoxy‐residing dispersed rubber phase and the rubber‐dissolved epoxy continuous phase. No rubber cavitation in the fracture process is found, the absence of which is explained as a result of dissolution of the epoxy resin into the rubber phase domains, which has a negative effect on the improvement of fracture toughness of the materials. Plastic deformation banding at the front of precrack tip, formed as a result of stable crack propagation, is identified as the major toughening process.  相似文献   

6.
Epoxies containing epoxy-terminated butadiene acrylonitrile rubber (ETBN) or amino-terminated butadiene acrylonitrile rubber (ATBN) were prepared and studied in terms of fatigue crack propagation (FCP) resistance and toughening mechanisms. Rubber incorporation improves both impact and FCP resistance, but results in slightly lower Young's modulus and Tg As Tg increases, the degree of toughening decreases. Rubber-induced shear yielding of the epoxy matrix is believed to be the dominant toughening mechanism. Decreasing fatigue resistance with increasing cyclic frequency is observed for both neat and rubber-toughened epoxies. This result may be explained by the inability of these materials to undergo possible beneficial effects of hysteretic heating. FCP resistance is linearly proportional to Mc1/2, where Mc is the apparent molecular weight between crosslinks determined on the rubber-toughened material. FCP resistance also increases with increasing static fracture toughness KIC. ATBN-toughened epoxies demonstrated better fatigue resistance than ETBN-toughened systems.  相似文献   

7.
The fracture behavior of elastomer-modified epoxy was investigated using compact-tension geometry. The elastomeric modifiers included a liquid carboxyl-terminated butadiene acrylonitrile and solid rubber particles of different sizes which were obtained from recycled automobile tires. When used with solid rubber alone, no significant improvement in the fracture toughness was observed. However, when used in combination with the liquid rubber modifier, it was observed that the fracture toughness of these hybrid epoxies was higher than that of those toughened with liquid rubber alone. This synergistic effect is explained in terms of crack deflection and localized shear yielding. Furthermore, we observed a slight improvement in the fracture toughness as the size of the solid rubber particles increased. Although using a combination of both reactive rubber liquids and solid rubber particles as toughening agents had been investigated previously, in this study, the solid rubber particles used were from recycled rubber tires. Therefore, we have clearly demonstrated an application of producing high-quality engineering epoxy systems using toughening modifiers that are relatively low in cost and created higher-value products for recycled solid rubber. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 271–277, 1997  相似文献   

8.
Reactive block copolymers (BCPs) provide a unique means for toughening epoxy thermosets because covalent linkages provide opportunities for greater improvement in the fracture toughness (KIC). In this study, a tailored reactive tetrablock copolymer, poly[styrene‐alt‐(maleic anhydride)]‐block‐polystyrene‐block‐poly(n‐butyl acrylate)‐block‐polystyrene, was incorporated into a diglycidyl ether of bisphenol A based epoxy resin. The results demonstrate the advantage of reactive BCP in finely tuning and controlling the structure of epoxy blends, even with 95 wt % epoxy‐immiscible triblocks. The size of the dispersed phase was efficiently reduced to submicrometer level. The mechanical properties, such as KIC, of these cured blends were investigated. The addition of 10 wt % reactive BCP into the epoxy resins led to considerable improvements in the toughness, imparting nearly a 70% increase in KIC. The designed reactive tetrablock copolymer opened good prospects because of its potential novel applications in toughening modification of engineering polymer composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42826.  相似文献   

9.
The toughening mechanisms in grafted-rubber concentrate (GRC), dispersed acrylic rubber (DAR), and Proteus rubber-modified brittle epoxy (i.e., highly crosslinked) systems are examined using scanning electron microscopy, optical microscopy and transmission electron microscopy techniques. The toughening of the GRC-modified brittle epoxy system is found to be due to cavitation of the GRC rubber particles, followed by formation of limited shear yielding when the crack propagates. Crack bifurcation and crack deflection are also observed in this system. Only crack bifurcation, crack deflection, and possibly crack/particle bridging mechanisms are operative in the DAR-modified brittle epoxy system. In the case of the Proteus rubber-modified system, the rubber appears to be rigid (Tg ≈ 28°C). As a result, the crack/particle bridging mechanism is not observed. Only crack deflection and crack pinning mechanisms are found. These observations are in agreement with the toughness measurement results (see Part I), which indicate that the GRC rubber provides the most effective toughening, followed by the DAR rubber, and then by the Proteus rubber. An approach for toughening brittle epoxies is also discussed.  相似文献   

10.
Polyester polyurethanes derived from poly(ethyleneterephthalate) (PET) glycolysates were blended with epoxy to form graft‐interpenetrating networks (IPNs) with improved mechanical properties. Microwave‐assisted glycolytic depolymerization of PET was performed in the presence of polyethylene glycols of different molecular weights (600–1500). The resultant hydroxyl terminated polyester was used for synthesis of polyurethane prepolymer which was subsequently reacted with epoxy resin to generate grafted structures. The epoxy‐polyurethane blend was cured with triethylene tetramine under ambient conditions to result in graft IPNs. Blending resulted in an improvement in the mechanical properties, the extent of which was found to be dependant both on the amount as well as molecular weight of PET‐based polyurethane employed. Maximum improvement was observed in epoxy blends prepared with polyurethane (PU1000) at a loading of 10% w/w which resulted in 61% increase in tensile strength and 212% increase in impact strength. The extent of toughening was quantified by flexural studies under single edge notch bending (SENB) mode. In comparison to the unmodified epoxy, the Mode I fracture toughness (KIC) and fracture energy (GIC) increased by ~45% and ~184%, respectively. The underlying toughening mechanisms were identified by fractographic analysis, which generated evidence of rubber cavitation, microcracking, and crack path deflection. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40490.  相似文献   

11.
Poly(butyl acrylate)/poly(vinyl acetate‐co‐methyl methacrylate) PBA/P(VAc‐co‐MMA) core–shell rubber particles with various shell compositions, i.e., VAc/MMA weight ratios, were used to toughen unsaturated polyester. The morphology and surface‐free energy of the rubber particles were determined by transmission electron microscopy (TEM) and contact angle measurements, respectively. The effect of shell structure on the dispersion state of rubber particles inside the unsaturated polyester resin was studied by scanning electron microscopy and TEM. Increasing MMA units in the shell changed the particle dispersion state from small agglomerates or globally well‐dispersed particles to large aggregates in the cured‐resin matrix. For the blends that contain 5 wt% rubber, the highest un‐notched impact toughness, stress‐intensity factor (KIC), and fracture energy (GIC) were observed for the blend containing PVAc shell particles. The results showed that by increasing the particle level from 5 to 10 wt%, the highest KIC and GIC values were obtained for the blend containing rubber particles with VAc/MMA (80/20 wt/wt) copolymer shell. The crack‐tip damage zone in the neat and rubber‐modified unsaturated polyester resins was observed by means of transmission optical microscopy. In addition, using PVAc shell particles exhibited a minimum reduction in the volume shrinkage and tensile properties of the rubber‐modified resin. POLYM. ENG. SCI., 52:1928–1937, 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
13.
Shiqiang Deng  Lin Ye  Jingshen Wu 《Polymer》2008,49(23):5119-5127
An experimental attempt was made to characterize the fracture behaviour of epoxies modified by halloysite nanotubes and to investigate toughening mechanisms with nanoparticles other than carbon nanotubes (CNTs) and montmorillonite particles (MMTs). Halloysite-epoxy nanocomposites were prepared by mixing epoxy resin with halloysite particles (5 wt% and 10 wt%, respectively). It was found that halloysite nanoparticles, mainly nanotubes, are effective additives in increasing the fracture toughness of epoxy resins without sacrificing other properties such as strength, modulus and glass transition temperature. Indeed, there were also noticeable enhancements in strength and modulus for halloysite-epoxy nanocomposites because of the reinforcing effect of the halloysite nanotubes due to their large aspect ratios. Fracture toughness of the halloysite particle modified epoxies was markedly increased with the greatest improvement up to 50% in KIC and 127% in GIC. Increases in fracture toughness are mainly due to mechanisms such as crack bridging, crack deflection and plastic deformation of the epoxy around the halloysite particle clusters. Halloysite particle clusters can interact with cracks at the crack front, resisting the advance of the crack and resulting in an increase in fracture toughness.  相似文献   

14.
G. Levita  A. Marchetti  E. Butta 《Polymer》1985,26(7):1110-1116
Mechanical properties (inpact strength, KIC, elastic modulus, hardness and loss factor) of ATBN/DGEBA blends of various compositions, cured at different temperatures, have been investigated. Both homogeneous and heterogeneous materials, with different properties, have been obtained. ATBN has been shown to be ineffective if a massive phase separation does not occur. Maximum toughness, measured by KIC, is obtained in the 120°–140°C cure temperature range. SEM micrographs of impacted specimens show that the moving cracks go through the segregated particles and suggest they lack ductility. The improvement in fracture resistance also depends on modifications of matrix properties.  相似文献   

15.
Herein, the fracture toughness of ternary epoxy systems containing nanosilica and hollow glass microspheres (HGMS) is investigated. The experimental measurements reveal synergistic fracture toughness in some hybrid compositions: The incorporation of 10 phr of HGMS and nanosilica alone modify the fracture toughness of epoxy by 39% and 91%, respectively. However, use of 10 phr hybrid modifier can enhance the fracture toughness of the resin up to 120%. Observations reveal different toughening mechanisms for the blends i.e., plastic deformation for silica nanoparticles and crack bifurcation for HGMS. Both of these toughening mechanisms additively contribute to the synergism in ternary epoxies.  相似文献   

16.
Amine‐terminated poly(arylene ether sulfone)–carboxylic‐terminated butadiene‐acrylonitrile–poly(arylene ether sulfone) (PES‐CTBN‐PES) triblock copolymers with controlled molecular weights of 15,000 (15K) or 20,000 (20K) g/mol were synthesized from amine‐terminated PES oligomer and commercial CTBN rubber (CTBN 1300x13). The copolymers were utilized to modify a diglycidyl ether of bisphenol A epoxy resin by varying the loading from 5 to 40 wt %. The epoxy resins were cured with 4,4′‐diaminodiphenylsulfone and subjected to tests for thermal properties, plane strain fracture toughness (KIC), flexural properties, and solvent resistance measurements. The fracture surfaces were analyzed with SEM to elucidate the toughening mechanism. The properties of copolymer‐toughened epoxy resins were compared to those of samples modified by PES/CTBN blends, PES oligomer, or CTBN. The PES‐CTBN‐PES copolymer (20K) showed a KIC of 2.33 MPa m0.5 at 40 wt % loading while maintaining good flexural properties and chemical resistance. However, the epoxy resin modified with a CTBN/8K PES blend (2:1) exhibited lower KIC (1.82 MPa m0.5), lower flexural properties, and poorer thermal properties and solvent resistance compared to the 20K PES‐CTBN‐PES copolymer‐toughened samples. The high fracture toughness with the PES‐CTBN‐PES copolymer is believed to be due to the ductile fracture of the continuous PES‐rich phases, as well as the cavitation of the rubber‐rich phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1556–1565, 2002; DOI 10.1002/app.10390  相似文献   

17.
Crack propagation in an epoxy resin in the presence of organic solvents was investigated. Fracture toughness (KIC, a critical stress intensity factor) of the epoxy resin in various external environments was measured using a double cantilever beam specimen. Fracture toughness for initiation (KICi) of the resin in the presence of organic solvents was larger than that in the absence of solvents, and the epoxy resin showed a minimum value of KICi in the presence of the organic solvent whose solubility parameter was about 11 (cal/cm3)1/2. This was due to large plastic deformation at a crack tip and the yield strength was lowered by exposure to organic solvents. The former increases KIC, while the latter decreases KIC. Fracture surfaces of the resin fractured in solvents suggest that a crack grew slightly when accompanied by a large plastic deformation, and then propagated at high speed.  相似文献   

18.
The present study focuses on the preparation of a novel hybrid epoxy nanocomposite with glycidyl polyhedral oligomeric silsesquioxane (POSS) as nanofiller, carboxyl terminated poly(acrylonitrile‐co‐butadiene) (CTBN) as modifying agent and diglycidyl ether of bisphenol A (DGEBA) as matrix polymer. The reaction between DGEBA, CTBN, and glycidyl POSS was carefully monitored and interpreted by using Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). An exclusive mechanism of the reaction between the modifier, nanofiller, and the matrix is proposed herein, which attempts to explains the chemistry behind the formation of an intricate network between POSS, CTBN, and DGEBA. The mechanical properties, such as tensile strength, and fracture toughness, were also carefully examined. The fracture toughness increases for epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems with respect to neat epoxy, but for hybrid composites toughening capability of soft rubber particles is lost by the presence of POSS. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. The viscoelastic properties of epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems were analyzed using dynamic mechanical thermal analysis (DMTA). The storage modulus shows a complex behavior for the epoxy/POSS composites due to the existence of lower and higher crosslink density sites. However, the storage modulus of the epoxy phase decreases with the addition of soft CTBN phase. The Tg corresponding to epoxy‐rich phase was evident from the dynamic mechanical spectrum. For hybrid systems, the Tg is intermediate between the epoxy/rubber and epoxy/POSS systems. Finally, TGA (thermo gravimetric analysis) studies were employed to evaluate the thermal stability of prepared blends and composites. POLYM. COMPOS., 37:2109–2120, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
核壳聚合物增韧环氧树脂的进展   总被引:7,自引:0,他引:7  
蓝立文  陈立新 《粘接》2002,23(6):1-5
核壳聚合物(CSP)现已用于增韧环境树脂,它具有许多优点:预先设计的CSP在环氧基体中的形态、大小和分散状态与固化规范无关;在提高环氧树脂韧性的同时不降低玻璃化温度。本文综述了CSP/环氧共混物的性能和增韧机理。主要的增韧机理是CSP粒子空穴化,释放裂缝附近的三轴度,继而产生膨胀形变和剪切屈服。  相似文献   

20.
Interaction between different toughening mechanisms is studied using a heat treated hybrid system, consisting of carboxyl‐terminated butadiene acrylonitrile (CTBN) rubber and EXPANCEL (expandable hollow microspheres) as modifiers for an epoxy resin. It was found that the fracture toughness of the hybrid system is higher than that of either individually EXPANCEL‐ or CTBN‐modified system for a given content of modifier, although the maximum toughness was not substantially high compared with maxima of single modifier systems. Microscopic examination revealed that damage zone due to CTBN particles ahead of the crack reduces due to the presence of EXPANCEL particles and nevertheless its fracture toughness increased. A possibility was deduced that the cavitation due to CTBN assists with promoting compressive stresses around EXPANCEL particles ahead of the crack tip, resulting in increase in fracture toughness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4470–4475, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号