首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
上官倩芡  程先华 《材料保护》2004,37(Z1):109-110,112
研究了稀土元素对齿轮钢碳氮共渗过程及其摩擦磨损性能的影响.结果表面:稀土对齿轮钢碳氮共渗过程有明显的催渗作用;稀土在碳氮共渗中渗入钢表面起微合金化作用改善了渗层组织;稀土碳氮共渗处理后的抗干磨损性能及抗滑动磨损性能均明显优于普通碳氮共渗处理.  相似文献   

3.
张乐  张津  任青松  付航涛 《材料导报》2016,30(19):19-25
稀土元素对氮碳共渗渗层的硬度、耐磨性等性能的提高起到了积极的作用,稀土在氮碳共渗中的作用及相关机理有待进一步研究。通过参考现有国内外报道的试验及机理研究,对钢的稀土氮碳共渗的发展过程、类型及稀土的加入方式、在共渗过程中的作用机理、对渗层及基体力学性能的影响进行了综合分析和总结。对钢的稀土氮碳共渗存在的问题进行了探讨,并给出了一些建议。  相似文献   

4.
首次以丙烷作为供碳剂对45钢进行离子碳氮共渗。利用金相显微镜、X射线衍射仪和显微硬度计研究了丙烷浓度对试样截面形貌、物相组成和表面硬度的影响。结果表明:随丙烷浓度的增加,化合物层厚度和表面硬度均呈现先增大后减小的趋势。当丙烷浓度为1.5%时,510℃离子碳氮共渗4h后,化合物层厚度和表面硬度分别达到最大值40μm和779HV0.05,同时得到以ε相为主,并伴有极少量渗碳体的最优物相组成。当丙烷浓度超过1.5%时,化合物层厚度和表面硬度均下降,这是由于渗碳体相含量随丙烷的增加而增加,并当丙烷浓度为2.5%时渗碳体成为主要物相,从而阻碍了C、N原子向基体内的进一步扩渗。  相似文献   

5.
为了探究DC53钢的优化氮碳共渗工艺,对DC53钢在530℃不同共渗时间、NH3/CO2不同气氛比值、不同炉内气压情况下的离子氮碳共渗效果进行了研究.运用OM、XRD、SEM、EDS、显微硬度、摩擦磨损实验,对材料的显微组织、显微硬度和耐磨性进行了分析.研究表明:对于冷作模具钢DC53,10 h、NH3/CO2为15∶1、炉内气压为800~1000 Pa时,氮碳共渗效果最好;随着稀土镧(La)的加入,渗层变厚且渗层与基体更致密,表层到心部的硬度梯度更小,氮碳共渗效果更佳.  相似文献   

6.
稀土对42CrMo钢等离子体氮碳共渗表层组织的影响   总被引:1,自引:0,他引:1  
对42CrMo钢在不同温度和时间下进行有、无稀土添加的脉冲等离子体氮碳共渗的工艺进行研究。通过金相检验和XRD分析,归纳出稀土对等离子体氮碳共渗的影响。结果表明:稀土的添加改善了渗层的显微组织,并降低了渗氮初期的化合物层厚度;使渗层的e相含量降低,γ'相含量增加;并且使表面氮含量提高。  相似文献   

7.
乔斌 《材料导报》1991,(12):9-13
国际热处理联盟专用木语委员会已经将氮碳共渗正式定义为化学热处理(以前称为软氯化),它可用于金属零件,以形成表面氮碳富集的化合物层,并在该层下面形成富氮扩散区。铁素体氮碳共渗是在Fe-N-C三元系共析温度之下(即低于580℃)进行的,其扩散区处于铁素体状态,旨在使金属零件表面具有良好的耐磨性、抗疲劳与抗腐蚀性能。但是,普通碳钢经处理后,化合物层下面不具备明显硬化层。奥氏体氮碳共渗是在590~720℃进行的奥氏体状态处理,此时共  相似文献   

8.
离子碳氮共渗具有渗速快,渗层及表面质量好,变形小及节能的优点。850—870℃离子碳氮共渗后直接淬火,更适合于精密零件的热处理。实践证明这是具有推广价值的新工艺。  相似文献   

9.
王彬  薛文斌  金小越 《材料工程》2014,(6):28-34,39
采用液相等离子体电解渗方法对Q235低碳钢进行硼碳共渗(PEB/C)处理,研究了Q235低碳钢表面硼碳共渗层的形貌、结构和显微硬度。评估了PEB/C处理前后Q235钢的电化学腐蚀性能,以及以GCr15钢球作为摩擦副在不同载荷条件下PEB/C渗层的摩擦磨损特性。结果表明,经过PEB/C处理后(330V/30min),形成厚度约为20μm并主要由Fe2B相组成的渗硼层。PEB/C处理轻微提高了Q235钢的耐腐蚀性能,但明显降低了Q235低碳钢与GCr15钢球对磨的摩擦因数和磨损率。当载荷为5N时,PEB/C样品的摩擦因数和磨损率分别是Q235钢基体的1/4和1/59。  相似文献   

10.
王丽梅  佟伟平 《纳米科技》2007,4(5):42-44,48
采用表面机械研磨处理(SMAT)技术实现了38CrMoAl钢的表面纳米化,并对表面纳米化后的样品进行了490℃离子氮碳共渗。采用扫描电镜、X-衍射、透射电镜、显微硬度仪等分析和测试手段,对处理后的样品进行观察分析及性能测试。结果表明:经SMAT处理的样品实现了低温离子氮碳共渗,渗层中渗入较多的氮、碳原子,并析出大量细小的高硬度化合物,获得了较好的硬度分布。  相似文献   

11.
利用液相等离子体电解渗技术分别在340,360V和380V槽电压下对纯铁进行硼碳氮三元共渗(PEB/C/N)表面处理。分析纯铁表面PEB/C/N共渗层的形貌、成分、相组成和显微硬度分布。采用球-盘摩擦磨损仪评估槽电压对渗层摩擦磨损性能的影响,并分析渗层与ZrO_2球对磨时磨损机理。纯铁表面的PEB/C/N三元共渗层厚度随着放电电压升高而增大,最高硬度也相应增加。380V处理1h后硼碳氮三元共渗层中渗硼层和过渡层厚度分别达到26μm和34μm,渗层最高硬度可以达到2318HV。硼碳氮三元共渗层的磨损率仅为纯铁基体的1/10。硼碳氮共渗处理大幅度降低纯铁的摩擦因数和磨损率,但不同槽电压下制备的PEB/C/N共渗层的摩擦因数和磨损率变化较小。  相似文献   

12.
碳含量对AISI304奥氏体不锈钢离子碳氮共渗性能的影响   总被引:2,自引:0,他引:2  
张以忱  郭元元  马胜歌  耿漫 《真空》2008,45(3):28-30
对AISI304奥氏体不锈钢进行了不同C2H2含量下的离子碳氮共渗,利用金相显微镜、辉光放电光谱仪、x射线衍射仪和显微硬度计测试了经碳氮共渗处理后试样改性层的截面形貌、渗层成分、相组成和力学性能.结果表明低温下离子碳氮共渗可以同时获得性能好的γc相和γn相,且最大含量分别出现在不同深度;气氛中C2H2含量为3%时,渗层厚度最大,表面显微硬度最大.  相似文献   

13.
氮在离子氮碳共渗中的作用   总被引:2,自引:0,他引:2  
孙定国  赵程  韩莉 《真空》2004,41(1):13-15
研究了在离子氮碳共渗过程中氮对化合物层厚度的影响,同时对化合物层的微观组织结构和显微硬度进行了分析.结果表明:在离子氮碳共渗过程中,气氛中低氮势不利于ε相的生成,且渗层的显微硬度较低;高氮势有利于ε相的生成,同时提高了渗层的显微硬度;当氮势超过60%后对化合物层厚度影响不大.  相似文献   

14.
15.
本文研究了室温形变和稀土元素对20钢碳、氮共渗的复合催渗作用。试验结果表明,适当的室温形变和加入稀土元素对20钢碳、氮共渗有明显的复合催渗作用,可使860℃共渗时的渗层厚度增加达38%,并且复合作用的结果使渗层组织和显微硬度分布得到改善,从而有利于性能的提高。文章讨论了室温形变对稀土元素渗入的有益影响。  相似文献   

16.
17.
45钢激光渗硼后的显微组织及相结构分析   总被引:8,自引:0,他引:8  
用扫描电子显微镜和X射线衍射仪对45钢激光渗硼层的显微组织和相结构进行了分析,结果表明45钢激光渗硼后,渗硼区的显微组织:表层为胞晶组织,次表层为树枝晶组织,再往里为共晶组织。渗硼区组织的相组成为α-Fe、FeB、Fe2B、Fe3(C·B)及B4C相等。不同显微组织中各相所占比例不同,因而导致各区显微硬度不同。  相似文献   

18.
本文采用室温轧制形变量、碳一氮共渗温度、时间三因子二次旋转组合设计方法,着重研究了室温形变对20CrMnTi钢;碳、氮共渗层抗磨损性能的影响,并用微机进行数据的数学处理,推算出磨损失重量、室温形变量、共渗温度及时间关系的回归方程。结果表明:室温形变能明显提高共渗层的抗磨损性能,而且存在最佳形变量,对应最佳形变量磨损失重减小一半。本文还讨沦了适量室温形变改善和提高渗层抗磨损性能的原因。  相似文献   

19.
本文用透射电镜研究了高湿镀铁离子氮碳共渗层的微观组织结构。结果表明:致密的ε相及Υ’相构成化合物层的最表层。扩散层为铁素体基体和由晶界出发并能穿过数个基体晶粒的Υ’相针或棒;晶内析出的α”及富 N 的 GP 区构成。观察发现扩散层中的Υ’相存在两种具有长周期结构的多型体。渗后基体镀铁层产生大量位错并形成小角度亚晶界及胞状位错结构。讨论了扩散层微观组织的形成。  相似文献   

20.
通过调控气体氮碳共渗过程中的NH_3和CO流量来调控气氛中的氮化势和碳势,从而调控共渗层的微观组织和性能。采用扫描电镜、X射线衍射仪、显微硬度计和电化学分析仪研究了气体氮碳共渗过程中的NH_3和CO流量对低碳钢氮碳共渗层的微观组织结构及其性能的影响。研究结果表明:气体氮碳共渗气氛中,随着NH_3流量的增加,化合物层厚度增大但致密性降低;随着CO流量的增加,化合物层致密性逐渐增大,但渗层厚度先增大后减小。氮碳共渗过程中C的加入可抑制γ'相的形成而促进ε相的产生,过量的C会形成θ相,但是C的渗入对渗层腐蚀性能影响较小。NH_3和CO对氮碳共渗过程中的协同作用表现为,当NH_3流量增加时,可相应增加CO流量来获得较厚、致密、耐腐蚀的化合物层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号