首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This work reports measurements to elucidate the reaction mechanisms of sensitive materials containing primary amino groups with CO2. The sensing mechanism is based on their ability to perform reversible acid-base reactions. The effect discussed for most of the previously used sensing layers concerns the formation of bicarbonate species, which requires H2O as well as an increased temperature. By using work function readout technology an operation at room temperature of the sensing layers is enabled providing satisfying sensor responses in terms of SNR (signal noise ratio) and response time. In contrast to the previously investigated higher operation temperature, the response resulting from a room temperature measurement appears to be dominated by the reversible formation of carbamate, which does not require the presence of water. The presence of carbamate is considered to be the reason of the improved sensing performance of this sensing material at room temperature with work function readout.To confirm this hypothesis, DRIFT-MIR, Raman, XPS and NMR spectroscopy were employed to investigate the formation of species after manufacturing of the sensitive layers. Besides the formation of bicarbonate, the results show a strong indication for carbamate formation.  相似文献   

2.
SnO2 thin layers were deposited by the way of the micro-droplet technique. The sensor substrate consisted of a thin membrane developed on oxidised silicon wafer. The sensing layers were deposited by means of the micro-droplet technique into thin layers of about 100 nm. Such devices were tested for benzene detection. The obtained results showed a very high sensitivity for this chemical compound since 500 ppb were detected.The results presented in this paper were not focused on the reactional mechanism of benzene detection but rather on the development of a cheap and sensitive sensor using sol-gel and micro-droplet processes. Since these layers were elaborated using solely tin oxide, the as-obtained sensors are not selective but these one are intended to be used by coupling with additional devices such as chromatographic micro-column and micro-pre-concentrators.  相似文献   

3.
The conductometric gas sensing characteristics of Cr2O3 thin films - prepared by electron-beam deposition of Cr films on quartz substrate followed by oxygen annealing - have been investigated for a host of gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 30 and 300 °C) and gas concentration (1-30 ppm). We demonstrate that these films are highly selective to H2S at an operating temperature of 100 °C, while at 220 °C the films become selective to Cl2. This result has been explained on the basis of depletion of chemisorbed oxygen from the surface of films due to temperature and/or interaction with Cl2/H2S, which is supported experimentally by carrying out the work function measurements using Kelvin probe method. The temperature dependent selectivity of Cr2O3 thin films provides a flexibility to use same film for the sensing of Cl2 as well as H2S.  相似文献   

4.
Gas sensors were designed and fabricated using oxide nanofibers as the sensing materials on micro platforms using micromachining technology. Pure and Pt doped SnO2 nanofibers were prepared by electrospinning and their H2S gas sensing characteristics were subsequently investigated. The sensing temperatures of 300 and 500 °C could be attained at the heater powers of 36 and 94 mW, respectively, and the sensors showed high and fast responses to H2S. The responses of 0.08 wt% Pt doped SnO2 nanofibers to 4-20 ppm H2S, were 25.9-40.6 times higher than those of pure SnO2 nanofibers. The gas sensing characteristics were discussed in relation to the catalytic promotion effect of Pt, nano-scale morphology of electrospun nanofibers, and sensor platform using micro heater.  相似文献   

5.
The intent of this work is to look at the effects of varying the La2CuO4 electrode area and the asymmetry between the sensing and counter electrode in a solid state potentiometric sensor with respect to NOx sensitivity. NO2 sensitivity was observed at 500-600 °C with a maximum sensitivity of ∼22 mV/decade [NO2] observed at 500 °C for the sensor with a La2CuO4 electrode area of ∼30 mm2. The relationship between NO2 sensitivity and area is nearly parabolic at 500 °C, decreases linearly with increasing electrode area at 600 °C, and was a mixture of parabolic and linear behavior 550 °C. NO sensitivity varied non-linearly with electrode area with a minima (maximum sensitivity) of ∼−22 mV/decade [NO] at 450 °C for the sensor with a La2CuO4 electrode area of 16 mm2. The behavior at 400 °C was similar to that of 450 °C, but with smaller sensitivities due to a saturation effect. At 500 °C, NO sensitivity decreases linearly with area.We also used electrochemical impedance spectroscopy (EIS) to investigate the electrochemical processes that are affected when the sensing electrode area is changed. Changes in impedance with exposure to NOx were attributed to either changes in La2CuO4 conductivity due to gas adsorption (high frequency impedance) or electrocatalysis occurring at the electrode/electrolyte interface (total electrode impedance). NO2 caused a decrease in high frequency impedance while NO caused an increase. In contrast, NO2 and NO both caused a decrease in the total electrode impedance. The effect of area on both the potentiometric and impedance responses show relationships that can be explained through the mechanistic contributions included in differential electrode equilibria.  相似文献   

6.
A new optical CO2 sensor based on the overlay of the CO2 induced absorbance change of pH indicator dye α-naphtholphthalein with the fluorescence of tetraphenylporphyrin (TPP) was developed. The observed luminescence intensity from TPP at 655 nm increased with increasing the CO2 concentration. The ratio I100/I0 values of the sensing films consisting of α-naphtholphthalein in ethyl cellulose layer and TPP in polystyrene layer, where I0 and I100 represent the detected luminescence intensities from a layer exposed to 100% nitrogen and 100% CO2, respectively, that the sensitivity of the sensor, are more than 53.9. The response and recovery times of the sensing films consisting of α-naphtholphthalein in ethyl cellulose layer and TPP in polystyrene layer were less than 5 s for switching from nitrogen to CO2, and for switching from CO2 to nitrogen. The signal changes were fully reversible and no hysterisis was observed during the measurements. The highly sensitive optical CO2 sensor based on fluorescence intensity changes of TPP due to the absorption change of α-naphtholphthalein with CO2 was achieved.  相似文献   

7.
Love wave hydrogen sensors based on ZnO nanorod layers deposited on 36°YX-LiTaO3 substrates have been studied. The ZnO nanorod layers are prepared by two steps: first, the seed layers, as well the guiding layers of the Love wave devices, are deposited by RF magnetron sputtering; second, the nanostructural layers, as well the sensing layers of the sensors, are grown by hydrothermal synthesis. Two kinds of ZnO layers have been analyzed by XRD, SEM and XPS. The XRD shows that both ZnO layers have (0 0 2) oriented wurtzite structures. The SEM results reveal that the morphologies of the deposited ZnO seed layers are continuous and compact, while the hydrothermal treated layers are with nanorods almost perpendicular to the substrate surfaces. Finally, the hydrogen sensing responses of the Love wave sensors activated by Pt catalysts are measured for various concentrations of hydrogen in synthetic air at room temperature. The results show that the sensors have high sensitivity and repeatability as the nanorod layers are optimized, such as the frequency shift 8 kHz toward 0.04% of H2 in synthetic air is obtained while the height of the nanorod layer is about 2.1 μm and the central frequency of the sensor is about 125.5 MHz. The XPS analyses of the sensitive layers show that there are oxygen vacancies in the layers, so the oxygen vacancy model is used to explain the hydrogen sensing mechanism of the Love wave sensors.  相似文献   

8.
A new gas sensor using TiO2 nanotube arrays was fabricated and explored for formaldehyde detection at room temperature. Highly ordered vertically grown TiO2 nanotube arrays were synthesized by using the conventional electrochemical anodization process. The sensor using the fabricated nanotube arrays as the sensing elements demonstrated a good response to different concentrations of formaldehyde from 10 to 50 ppm and a very good selectivity over other reducing gas species such as ethanol and ammonia at room temperature. While the exact sensing mechanism is unclear, some possibilities are briefly discussed.  相似文献   

9.
Nanostrucutred spinel ZnCo2O4 (∼26-30 nm) was synthesized by calcining the mixed precursor (consisting of cobalt hydroxyl carbonate and zinc hydroxyl carbonate) in air at 600 °C for 5 h. The mixed precursor was prepared through a low cost and simple co-precipitation/digestion method. The transformation of the mixed precursor into nanostructured spinel ZnCo2O4 upon calcinations was confirmed by X-ray diffraction (XRD) measurement, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). To demonstrate the potential applicability of ZnCo2O4 spinel in the fabrication of gas sensors, its LPG sensing characteristics were systematically investigated. The ZnCo2O4 spinel exhibited outstanding gas sensing characteristics such as, higher gas response (∼72-50 ppm LPG gas at 350 °C), response time (∼85-90 s), recovery time (∼75-80 s), excellent repeatability, good selectivity and relatively lower operating temperature (∼350 °C). The experimental results demonstrated that the nanostructured spinel ZnCo2O4 is a very promising material for the fabrication of LPG sensors with good sensing characteristics. Plausible LPG sensing mechanism is also discussed.  相似文献   

10.
A Rayleigh surface acoustic wave (RSAW) resonator with polyaniline/tungsten oxide nanocomposite thin film is investigated as a gas sensor for detecting the presence of nitric oxide (NO) in air. The sensor developed in this work was sensitive to NO gas at room temperature. It is shown that the sensor had a frequency shift of 1.2 ppm when it was exposed to 138 ppb NO. The negative frequency response increased with NO concentration increasing. The response and recovery times of the NO sensor in this work were about 20-80 s. In addition, this RSAW sensor also exhibited reversibility and repeatability to the presence of NO gas. Especially, the presented sensor showed high selectivity with NO gas to separate from NO2 and CO2 gases.  相似文献   

11.
The α-Fe2O3 nanorods were successfully synthesized without any templates by calcining the α-FeOOH precursor in air at 300 °C for 2 h and their LPG sensing characteristics were investigated. The α-FeOOH precursor was prepared through a simple and low cost wet chemical route at low temperature (40 °C) using FeSO4·7H2O and CH3COONa as starting materials. The formation of α-FeOOH precursor and its topotactic transformation to α-Fe2O3 upon calcination was confirmed by X-ray diffraction measurement (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. The α-Fe2O3 nanorods exhibited outstanding gas sensing characteristics such as, higher gas response (∼1746-50 ppm LPG at 300 °C), extremely rapid response (∼3-4 s), relatively slow recovery (∼8-9 min), excellent repeatability, good selectivity and lower operating temperature (∼300 °C). Furthermore, the α-Fe2O3 nanorods are able to detect up to 5 ppm for LPG with reasonable response (∼15) at the operating temperature of 300 °C and they can be reliably used to monitor the concentration of LPG over the range (5-60 ppm). The experimental results clearly demonstrate the potential of using the α-Fe2O3 nanorods as sensing material in the fabrication of LPG sensors. Plausible LP G sensing mechanism of the α-Fe2O3 nanorods is also discussed.  相似文献   

12.
The measurement of CO2 by Non-Dispersive InfraRed absorption (NDIR) is often used as a tracer of human occupancy in confined living spaces. The major constraint of commercial sensors comes from the power consumption of the IR source, which makes them unsuitable for autonomous operation.This paper reports the fabrication and the characterization of a black-body IR source based on a microhotplate micromachined in Si and suitable to work above 650 °C. The use of state-of-the-art MEMS technologies allows to lower the power consumption below 50 mW while ensuring a lifetime well beyond 10 years.The radiance of the microhotplate in the spectral range where CO2 adsorption takes place indicated that the device works as a quasi-perfect blackbody source providing enough power to drive an autonomous NDIR system for CO2 detection.  相似文献   

13.
Porous gas sensing films composed of TiO2 nanotubes were fabricated for the detection of volatile organic compounds (VOCs), such as alcohol and toluene. In order to control the microstructure of TiO2 nanotubular films, ball-milling treatments were used to shorten the length of TiO2 nanotubes and to improve the particle packing density of the films without destroying their tubular morphology and crystal structure. The ball-milling treatment successfully modified the porosity of the gas sensing films by inducing more intimate contacts between nanotubes, as confirmed by scanning electron microscopy (SEM) and mercury porosimetry. The sensor using nanotubes after the ball-milling treatment for 3 h exhibited an improved sensor response and selectivity to toluene (50 ppm) at the operating temperature of 500 °C. However, an extensive ball-milling treatment did not enhance the original sensor response, probably owing to a decrease in the porosity of the film. The results obtained indicated the importance of the microstructure control of sensing layers in terms of particle packing density and porosity for detecting large sized organic gas molecules.  相似文献   

14.
In situ SiO2-doped SnO2 thin films were successfully prepared by liquid phase deposition. The influence of SiO2 additive as an inhibitor on the surface morphology and the grain size for the thin film has been investigated. These results show that the morphology of SnO2 film changes significantly by increasing the concentration of H2SiF6 solution which decreases the grain size of SnO2. The stoichiometric analysis of Si content in the SnO2 film prepared from various Si/Sn molar ratios has also been estimated. For the sensing performance of H2S gas, the SiO2-doped Cu-Au-SnO2 sensor presents better sensitivity to H2S gas compared with Cu-Au-SnO2 sensor due to the fact that the distribution of SiO2 particles in grain boundaries of nano-crystallines SnO2 inhibited the grain growth (<6 nm) and formed a porous film. By increasing the Si/Sn molar ratio, the SiO2-doped Cu-Au-SnO2 gas sensors (Si/Sn = 0.5) exhibit a good sensitivity (S = 67), a short response time (t90% < 3 s) and a good gas concentration characteristic (α = 0.6074). Consequently, the improvement of the nano-crystalline structures and high sensitivity for sensing films can be achieved by introducing SiO2 additive into the SnO2 film prepared by LPD method.  相似文献   

15.
A highly sensitive integrated polarimetric interferometer biosensor with improved long-time stability and simple operation was prepared by using a novel prism-chamber assembly and an inexpensive waveguide made by sputtering a tapered nanometric layer of Ta2O5 on a single-mode glass waveguide. By comparing the measured refractive-index (RI) sensitivities with those simulated based on a four-layer homogeneous waveguide, both the equivalent thicknesses (Teq) for the tapered Ta2O5 layers and a severe dependence of RI sensitivity on Teq were obtained. Addition of 1 g of water in 100 g of a Chinese liquor (alcohol concentration = 46% (v/v)) was easily detected by the sensor. Monitoring of anti-human IgG adsorption with a waveguide of Teq = 31.99 nm indicates that the antibody coverage required for inducing a phase-different change of Δ? = π is less than 0.012 monolayer. The same waveguide presents a quasi-linear dependence of Δ? on water temperature with the slope of d?)/dT = −28.50°/°C to which the contribution by the thermo-optical effect of the waveguide is 4.24°/°C, equivalent to a liquid RI change of Δnc = 1.41 × 10−5. The interferometer exhibits the promising potential for chemical and biological analyses because of its outstanding characteristics.  相似文献   

16.
This paper describes the preparation and characterization of unimorph actuators for deformable mirrors, based on Pb(Zr0.52Ti0.48)O3 (PZT52) thin film. As comparison, two different designs, where the PZT layer in the unimorph actuators was driven by either interdigitated electrodes (IDT-mode) or parallel plate electrodes (d31-mode), were investigated. The actuators utilize a unimorph membrane (diaphragm) structure consisting of an active PZT piezoelectric layer and a passive SiO2/Si composite layer. To fabricate the diaphragm structures, n-type (1 0 0) silicon-on-insulator (SOI) wafers with 1 μm thermal SiO2 were used as substrates (for d31-mode actuators, the upper Si part of SOI need to be heavily doped and used as bottom electrodes simultaneously). Sol-gel derived PZT piezoelectric layers with PbTiO3 (PT) bufferlayer in total of 0.86 μm were then fabricated on them, and 0.15 μm Al reflective layers were deposited and patterned into top electrode geometries, subsequently. The diaphragms were released using orientation-dependent wet etching (ODE) with 5-10 μm residual silicon layers. The complete unimorph actuators comprise 4 × 4 discrete units (4 mm2 in size) with patterned PZT films for parallel plate configuration or 3 × 3 individual pixels (2 mm in IDT diameter) with continuous PZT films in graphic region for IDT configuration. The measurement results indicated that both of the two configurations can generate considerable deflections at low voltage. The measured maximum central deflections at 15 V were approximately 2.5 μm and 2.8 μm, respectively. The intrinsic strain conditions shaping the deflection profiles for the diaphragm actuators were also analyzed. In this paper, the behaviors of clamped parallel plate configuration without a diaphragm were also evaluated.  相似文献   

17.
In order to further understand the different contributions to NOx sensing mechanism as well as the importance of electrode geometry, solid state potentiometric sensors with varying La2CuO4 sensing electrode thicknesses were studied. These sensors (with a Pt counter electrode) showed a dependence of NO2 sensitivity which decreased with increasing thickness in the temperature range of 550-650 °C. They also showed NO sensitivity that was independent of thickness at 400 °C and 600 °C, but varied at temperatures between. This behavior was attributed to multiple mechanistic contributions explained by Differential Electrode Equilibria.  相似文献   

18.
Via flame spray pyrolysis (FSP), SnO2 gas sensing layers have been doped with 0.01-4 wt% Sb as well as 0.01 wt% Pd in combination with 1 wt% Sb. Characterization of these materials through X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and transmission electron microscopy (TEM) revealed particle grain sizes and crystallinity unchanged by the presence of Sb and/or Pd. The addition of Sb to SnO2 resulted in the significant decrease in baseline resistance; up to two orders of magnitude in dry air at 300 °C and three orders of magnitude in humid air at 300 °C, which is significant for FSP-prepared gas sensors with high porosity and low particle coordination number since they typically suffer from high baseline resistance. While the baseline resistance was improved with Sb-doping, the sensor signal (R0/Rgas) remained constant over all concentrations explored. Moreover, regarding the surface functionalization of SnO2 with Pd in combination with Sb-doping, the reduction of baseline resistance was preserved without influencing sensor signal.  相似文献   

19.
Crystalline α-MoO3/TiO2 core/shell nanorods are fabricated by a hydrothermal method and subsequent annealing processes under H2/Ar flow and in the ambient atmosphere. The shell layer is composed of crystalline TiO2 particles with a diameter of 2-6 nm, and its thickness can be easily controlled in the range of 15-45 nm. The core/shell nanorods show enhanced sensing properties to ethanol vapor compared to bare α-MoO3 nanorods. The sensing mechanism is different from that of other one-dimensional metal oxide core/shell nanostructures due to very weak response of TiO2 nanoparticles to ethanol. The enhanced sensing properties can be explained by the change of type II heterojunction barrier formed at the interface between α-MoO3 and TiO2 in the different gas atmosphere. The present results demonstrate a novel sensing mechanism available for gas sensors with high performance.  相似文献   

20.
Nb2O5-doped (1 − x)Ba0.96Ca0.04TiO3-xBiYO3 (where x = 0.01, 0.02, 0.03 and 0.04) lead-free PTC thermistor ceramics were prepared by a conventional solid state reaction method. X-ray diffraction, scanning electron microscope, Agilent E4980A and resistivity-temperature measurement instrument, were used to characteristic the lattice distortion, microstructure, temperature dependence of permittivity and resitivity-temperature dependence. It was revealed that the tetragonality c/a of the perovskite lattice, the microstructure and the Curie temperature changed with the BiYO3 content. In order to decrease the room temperature resistivity, the effect of Nb2O5 on the room temperature resistivity was also studied, and its optimal doping content was finally chosen as 0.2 mol%. The 0.97Ba0.96Ca0.04TiO3-0.03BiYO3-0.002Nb2O5 thermistor ceramic exhibited a low ρRT of 3.98 × 103 Ω cm, a typical PTCR effect of ρmax/ρmin > 103 and a Tc of 153 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号