首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The impact of residual stresses on the fatigue crack initiation life of welded joints is evaluated by the finite element method. The residual stresses of nonload‐carrying cruciform joints, induced by welding and ultrasonic impact treatment, are modelled by initial stresses, using the linear superposition principle. An alternative approach of using modified stress‐strain curves in the highly stressed zone is also proposed to account for the residual stress effect on the local stress‐strain history. An evaluation of the fatigue crack initiation life of welded joints based on the local strain approach is carried out. The predicted results show the effect of residual stresses and agree well with published experimental results of as‐welded and ultrasonic impact treated specimens, demonstrating the applicability of both approaches. The proposed approaches may provide effective tools to evaluate the residual stress effect on the fatigue crack initiation life of welded joints.  相似文献   

2.
In this work laser‐welded tube‐tube specimens made of aluminium alloys AlMg3.5Mn and AlSi1MgMn T6 were experimentally tested under constant and variable amplitude loading, under pure axial and pure torsion loading. In order to evaluate the influence on fatigue behaviour of the residual stresses, because of the welding process, some specimens were subjected to postweld heat treatment and then were tested. The numerical analyses, using finite element (FE), were carried out to obtain a reliable estimation of the residual stress in the specimen. The numerical results were in a good agreement with experimental ones obtained by means of hole‐drilling method. Finally, the residual stress distribution was superimposed to stress distribution because of fatigue loads obtained by FE analyses applying local concept, to calculate the stresses in the crack initiation zone and to understand the different types of failure that occurred in as‐welded and relieved specimens.  相似文献   

3.
To what extent the welding residual stresses influence fatigue is still unclear and matter of debate. An important reason for this lack of clarity is that the exact determination of residual stress fields in welds is complicated which leads to conservative assumptions about these stresses in the fatigue design codes. The advances in the diffraction analysis of materials offer the opportunity for the full‐field residual strain mapping in welds albeit at the cost of time and technical complexity. In this work residual stress field determination in welded S1100QL specimens by means of the x‐ray, synchrotron and neutron diffraction techniques was undertaken. The results revealed that the maximum values of surface residual stresses are not as frequently assumed, as high as the yield strength in small scale specimens. At the weld toe which could serve as a fatigue crack initiation site, even lower residual stresses than the weld centreline could be present. The in‐depth measurements revealed that the effective part of the residual stress field which could be decisive for the fatigue failure initiation is concentrated at the surface of the weld.  相似文献   

4.
The aim of this paper is to develop a probabilistic approach of high cycle fatigue (HCF) behaviour prediction of welded joints taking into account the surface modifications induced by welding and the post‐welding shot peening treatment. In this work, the HCF Crossland criterion has been used and adopted to the case of welded and shot peened welded parts, by taking into account the surface modifications which are classified as follows: (i) the compressive residual stresses, (ii) the surface work‐hardening, (iii) the geometrical irregularities and (iv) the superficial defects. The random effects due to the dispersions of: (i) the HCF Crossland criterion material characteristics (ii) the applied loading and (iii) the surface modifications parameters are introduced in the proposed model. The HCF reliability has been computed by using the ‘strength load’ method with Monte Carlo simulation. The reliability computation results lead to obtain interesting and useful iso‐probabilistic Crossland diagrams (PCD) for different welding and shot peening surface conditions. To validate the proposed method, the approach has been applied to a butt‐welded joint made of S550MC high strength steel (HSS). Four types of specimens are investigated: (i) base metal (BM), (ii) machined and grooved (MG) condition, (iii) As welded (AW) condition and (iv) as welded and shot peened (AWSP) condition. The comparison between the computed reliabilities and the experimental investigations reveals good agreement leading to validate the proposed approach. The effects of the different welded and post‐weld shot peened specimen's surface properties are analysed and discussed using the design of experiments (DoE) techniques.  相似文献   

5.
The interaction between residual stress and fatigue crack growth rate has been investigated in middle tension and compact tension specimens machined from a variable polarity plasma arc welded aluminium alloy 2024-T351 plate. The specimens were tested at three levels of applied constant stress intensity factor range. Crack closure was continuously monitored using an eddy current transducer and the residual stresses were measured with neutron diffraction. The effect of the residual stresses on the fatigue crack behaviour was modelled for both specimen geometries using two approaches: a crack closure approach where the effective stress intensity factor was computed; and a residual stress approach where the effect of the residual stresses on the stress ratio was considered. Good correlation between the experimental results and the predictions were found for the effective stress intensity factor approach at a high stress intensity factor range whereas the residual stress approach yielded good predictions at low and moderate stress intensity factor ranges. In particular, the residual stresses accelerated the fatigue crack growth rate in the middle tension specimen whereas they decelerated the growth rate in the compact tension sample, demonstrating the importance of accurately evaluating the residual stresses in welded specimens which will be used to produce damage tolerance design data.  相似文献   

6.
Abstract: The deep hole drilling (DHD) method measures the through‐thickness distribution of residual stress in a component. Sources of uncertainty in the application of the method are identified and three different methods for determining the magnitudes of uncertainty are presented. The analyses are applied to experimental measurements of stress in two calibration studies for ferritic steel and an aluminium alloy. Finally, the residual stresses measured in a repair welded steel pipe are examined to assess the level of uncertainty.  相似文献   

7.
Abstract

This paper presents part of the work from the EU project ELIXIR on a series of welded geometries. Experimental and numerical techniques have been applied to determine residual stresses in buttwelded joints of high strength steel. Starting from simple weld geometries that served for validation of these tools, residual stresses were measured and calculated for an industrial component for offshore application. In spite of some simplifications in the numerical simulation of the welding process, satisfying agreement with experimental data has been achieved especially if relevant three-dimensional effects have been modelled. The validation of numerical techniques for residual stress calculations can help to enable cost effective fabrication and repair of steel components.  相似文献   

8.
This paper is devoted to the experimental and numerical assessment of residual stresses created by welding in the region surrounding the weld toe of tubular K‐shaped joints (i.e. region most sensitive to fatigue cracking). Neutron‐diffraction measurements were carried out on K‐joints cut from large‐scale truss beams previously subjected to high cycle fatigue. Tri‐axial residual stresses in the transverse, longitudinal and radial direction were obtained from the weld toe as a function of the depth in the thickness of the tube wall. In addition, thermomechanical analyses were performed in three‐dimensional using ABAQUS and MORFEO finite element codes. Experimental and numerical results show that, at and near the weld‐toe surface, the highest residual stresses are critically oriented perpendicularly to the weld direction, and combined with the highest externally applied stresses. Based on a systematic study on geometric parameters, analytical residual stress distribution equations with depth are proposed.  相似文献   

9.
Ahead of sharp V‐notches, residual stresses, arising from the solidification of a fusion zone, have the same asymptotic nature of the stress field induced by mechanical loads. This stress field significantly affects the engineering properties of structural components, notably fatigue life and corrosion resistance of welded joints. Tensile residual stresses can reduce the fatigue strength of welded joints particularly in the high‐cycle regime, where no stress redistribution due to local plasticity phenomena is expected to be present. The aim of this work is to analyse, by means of the numerical simulation, the residual stress redistribution near a V‐notch tip induced by cyclic loads and to propose a method, based on the local strain energy approach, for the fatigue resistance estimation of pre‐stressed components. The numerical solutions of the problem were carried out under the hypothesis of generalized plane strain conditions by means of SYSWELD and SYSTUS codes.  相似文献   

10.
Residual Stress Evolution in Repair Welds   总被引:1,自引:0,他引:1  
C. Veiga  A. Loureiro  A. Dias 《Strain》2003,39(2):57-63
Abstract: The aim of this paper is to study the influence of the repair procedure on the evolution of residual stress distribution in butt welds. C-Mn steel coupon plates of 11 mm thickness were prepared, subjected to stress relief heat treatment and welded with two beads, using the gas metal arc welding process. After the deposition of two weld beads, two successive repair welds were made on the middle length of the second bead. Longitudinal and transverse residual stresses were measured in the vicinity of the weld, after deposition of the two weld beads and after each repair weld. Residual stress evaluation was conducted using an X-ray diffraction method. The repair welds caused a decrease in magnitude of the initial longitudinal residual welding stresses, and an increase of the transverse residual stress magnitude, in tension at points within the repair length, and in compression at points outside the repair length.  相似文献   

11.
Low‐Transformation‐Temperature materials (LTT) were designed to reduce delay as well as residual tensile stress in welds on carbon‐manganese steels. Using the volume expansion effect during a martensitic transformation these materials counteract the volume shrinkage during cooling. While this positive effects on residual stress relief by Low‐Transformation‐Temperature‐alloys has been proven in various studies, these alloys have always been used in large volumes as additional filler material in electric arc welding processes. Modular heat fields initiated by an electron‐beam‐welding‐process offers the potential of a time‐activated initiation of compressive stresses triggered by phase transformation of Low‐Transformation‐Temperature‐alloys. Developing a technology able to reduce residual stress and thus the deformation of complex welded components is the aim. The first approach of Low‐Transformation‐Temperature‐material used in the electron beam process and its behaviour is presented here.  相似文献   

12.
Arc welding typically generates residual tensile stresses in welded joints, leading to deteriorated fatigue performance of these joints. Volume expansion of the weld metal at high temperatures followed by contraction during cooling induces a local tensile residual stress state. A new type of welding wire capable of inducing a local compressive residual stress state by means of controlled martensitic transformation at relatively low temperatures has been studied, and the effects of the transformation temperature and residual stresses on fatigue strength are discussed. In this study, several LTTW (Low Transformation‐Temperature Welding) wires have been developed and investigated to better characterize the effect of phase transformation on residual stress management in welded joints. Non‐load‐carrying cruciform fillet welded joints were prepared for measurement of residual stresses and fatigue testing. The measurement of the residual stresses of the three designed wires reveals a compressive residual stress near the weld toe. The fatigue properties of the new wires are enhanced compared to a commercially available wire.  相似文献   

13.
Susceptibility to stress corrosion tests were carried out on electron beam welded specimens made from 7050-T7451 aluminium alloy. As a comparison, specimens made from base material were tested too. The resistance of the welded material was high: the tensile properties were only slightly lower than those of the base material. After 30 day exposure to a corrosive environment (alternate immersion in a 3.5% NaCl solution), the tensile properties of the welded material were considerably reduced, while the same properties were only slightly affected in the base material. The combined effect of stress and corrosion was only slightly detrimental for the base material and very detrimental for the welded material. At the lowest stress level tested, about 25% of the ultimate stress, the welded specimens failed after a mean life of 90 days. Considerable residual stresses associated with the welding process were measured in a plate. A test was performed to verify the possibility of stress corrosion cracking promoted by the welding residual stresses. In actual fact, no cracks were observed, but the corrosion rate increased, particularly in the areas affected by the higher residual stresses.  相似文献   

14.
Recent studies have illustrated a predominant role of the residual stress on the fatigue crack growth in friction stir welded joints. In this study, the role of the residual stress on the propagation of fatigue cracks orthogonal to the weld direction in a friction stir welded Ti‐6Al‐4V joint was investigated. A numerical prediction of the fatigue crack growth rate in the presence of the residual stresses was carried out using AFGROW software; reasonable correspondence between the predictions and the experimental results were observed when the effects of residual stress were included in the simulation.  相似文献   

15.
Previous studies suggested that the state of residual stress in a weld may be modified by vibration during and after the welding process. In this study, the effect of rigid body motion vibration on welding residual stresses was investigated. The specimens were welded while they were being vibrated in a rigid body motion mode. The specimens were vibrated using two different frequencies (50 Hz and 500 Hz). At the lower frequency vibration (50 Hz), small changes in the residual stresses were found, with no particular trend. At the high frequency vibration, no significant reductions in the residual stresses were observed in the longitudinal stresses or in the transverse direction. Some initial results are presented also regarding flexural vibration effects.  相似文献   

16.
Fatigue damage of butt‐welded joints is investigated by a damage mechanics method. First, the weld‐induced residual stresses are determined by using a sequentially coupled thermo‐mechanical finite element analysis. The plastic damage of material is then calculated with the use of Lemaitre's plastic damage model. Second, during the subsequent fatigue damage analysis, the residual stresses are superimposed on the fatigue loading, and the weld‐induced plastic damage is considered as the initial damage via an elasto‐plastic fatigue damage model. Finally, the fatigue damage evolution, the relaxation of residual stress, and the fatigue lives of the joints are evaluated using a numerical implementation. The predicted results agree well with the experimental data.  相似文献   

17.
Residual stresses due to the welding process in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Areas with compressive residual stresses may be present in complex structures, where the details are less critical than predicted. This is shown in the paper by the example of fillet‐welded stiffener ends, where beneficial compressive residual stresses cause the initiation of fatigue cracks at other locations in less‐strained areas. Another example for the effects of residual stresses concerns the stress initiation and propagation at a structural detail under fully compressive load cycles. Fatigue cracks are possible here due to high tensile residual stress fields. The conclusion is that the welding‐induced residual stresses should be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation.  相似文献   

18.
郭大鹏  周超  王登峰  王元清 《工程力学》2023,40(2):36-46+55
在箱式钢结构中起主要承载作用的侧面墙板-立柱结构体系中,受墙板蒙皮支撑作用的高强钢立柱,其残余应力分布受与墙板焊接连接过程影响,与独立工作焊接H形截面构件有较大差异。为研究Q235钢墙板—Q460高强钢立柱结构体系的残余应力分布规律,采用盲孔法对6个结构体系试件和2个独立Q460高强钢焊接H形截面试件进行了试验研究。基于测量数据,得到了所有试件的全截面残余应力分布,分析了墙板与立柱焊接连接、截面尺寸等因素对残余应力分布的影响,并研究了截面各板件间残余应力的相互影响及自平衡性。结果表明:立柱与墙板的焊接在一定程度上降低了立柱后翼缘中部的最大残余拉应力,减小了后翼缘残余压应力的分布范围,对前翼缘和腹板无明显影响;残余拉应力幅值与截面尺寸无直接关系,残余压应力随着板件宽厚比的增大而减小;各板件间残余应力存在相互影响作用,前翼缘、腹板以及后翼缘与墙板组合板件这3部分分别满足自平衡。提出了适用于Q235钢墙板—Q460高强钢立柱结构体系的较为准确和安全的残余应力分布数学模型,为后续研究受墙板蒙皮支撑的高强钢立柱稳定性奠定基础。  相似文献   

19.
Fatigue behaviour of laser repairing welded joints   总被引:1,自引:0,他引:1  
This paper presents a fatigue study in Nd-YAG laser surface repairing welded joints in specimens of two base materials used in mould production. The tests were carried out in a servo-hydraulic machine in tension, under constant amplitude loading, with two stress ratios R = 0 and R = 0.4. Welded specimens were prepared with U notches and filled with laser welding deposits. The fatigue results are presented in the form of S–N curves obtained in welded and non-welded conditions. Complementary measurements of hardness and residual stresses profiles were carried out along the surface of laser welded specimens to understand the observed fatigue behaviour. The melted material was the weaker region, with lower values of hardness and higher tensile residual stresses, presenting also a high number of defects that are potential failure sites. The presence of such defects can explain the relatively poor fatigue strength of the laser repairing joints in comparison to base materials.  相似文献   

20.
Laser deposit welding based on modern ND-YAG lasers is a new mould repair process with advantages relatively to the traditional methods (micro-plasma and TIG methods), namely deposition of small volumes of the filler material without distortion. Residual stresses play a major role on the fatigue and thermal–mechanical fatigue behaviour of welds. This paper presents the experimental results and numerical predictions of the residual stresses in joints manufactured with two hot-working tool steels: X.40.CrMoV.5.1 and 40.CrMnNiMo.8.6.4, in the laser-deposited layer and in the heat-affected zone. Welded specimens were prepared with U notches and filled with ND-YAG laser welding deposits. Trough-depth residual stresses evaluation after laser deposit welding were performed in order to analyse the influence of the residual stress state on fatigue behaviour of mould steels. Both X-ray diffraction sin2γ method (XRD) and incremental hole-drilling technique (IHD) were used in residual stress measurement. Numerical predictions of the residual stress distributions were obtained for several values of the technologic parameters, compared with experimental results and discussed based on the assumptions stated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号