首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is observed that the short fatigue cracks grow faster than long fatigue cracks at the same nominal driving force and even grow at stress intensity factor range below the threshold value for long cracks in titanium alloy materials. The anomalous behaviours of short cracks have a great influence on the accurate fatigue life prediction of submersible pressure hulls. Based on the unified fatigue life prediction method developed in the authors' group, a modified model for short crack propagation is proposed in this paper. The elastic–plastic behaviour of short cracks in the vicinity of crack tips is considered in the modified model. The model shows that the rate of crack propagation for very short cracks is determined by the range of cyclic stress rather than the range of the stress intensity factor controlling the long crack propagation and the threshold stress intensity factor range of short fatigue cracks is a function of crack length. The proposed model is used to calculate short crack propagation rate of different titanium alloys. The short crack propagation rates of Ti‐6Al‐4V and its corresponding fatigue lives are predicted under different stress ratios and different stress levels. The model is validated by comparing model prediction results with the experimental data.  相似文献   

2.
Small internal fatigue cracks initiated in Ti‐6Al‐4V in the very high cycle regime were detected by synchrotron radiation microcomputed tomography (SR‐μCT) at SPring‐8 in Japan. The initiation and growth behaviours of the cracks were nondestructively observed, and the da/dNΔK relationship was measured and compared with that obtained in a high vacuum environment. SR‐μCT revealed that more than 20 cracks were initiated in one specimen. The crack initiation life varied widely from 20% to 70% of the average fatigue life and had little influence on the growth behaviour that followed. The initiation site size of each internal crack detected in one specimen was comparable with the size of the fracture origins obtained in ordinary fatigue tests. These results suggest that the surrounding microstructures around the initiation site are likely a dominant factor on the internal fracture rather than the potential initiation site itself. The internal crack growth rates were lower than 10?10 m/cycle, and extremely slow rates ranging from 10?13 to 10?11 m/cycle were measured in a lower ΔK regime below 5 MPa√m. The internal crack growth rate closely matched that of surface cracks in a high vacuum, and the reason for the very long life of internal fatigue fractures was believed to result from the vacuum‐like environment inside the internal cracks.  相似文献   

3.
The paper presents the test results obtained for fatigue crack growth in Ti–6Al–4V titanium alloy subjected to bending. The tests were performed in plane specimens with the stress concentrators being a one‐sided sharp notch. The tested specimens were made of the oxygenated Ti–6Al–4V subjected to various variants of heat treatment. The tests were carried out at the fatigue test stand MZGS‐100 under loading frequency 28.4 Hz. From the obtained results of fatigue and structural tests it appears that schemes of crack propagation and fatigue lives of the considered alloy are different depending on a structure obtained as a result of a given heat treatment.  相似文献   

4.
In this paper, a modification of the UniGrow model is proposed to predict total fatigue life with the presence of a short fatigue crack by incorporating short crack propagation into the UniGrow crack growth model. The UniGrow model is modified by 2 different methods, namely the “short crack stress intensity correction method” and the “short crack data‐fitting method” to estimate the total fatigue life including both short and long fatigue crack propagations. Predicted fatigue lives obtained from these 2 methods were compared with experimental data sets of 2024‐T3, 7075‐T56 aluminium alloys, and Ti‐6Al‐4V titanium alloy. Two proposed methods have shown good fatigue life predictions at relatively high maximum stresses; however, they provide conservative fatigue life predictions at lower stresses corresponding high cycle fatigue lives where short crack behaviour dominates total fatigue life at lower stress levels.  相似文献   

5.
This paper describes the fatigue properties of the beta titanium alloy 55Ti–30Nb–10Ta–5Zr, generally referred to as ‘Gum Metal’. Rotating bending fatigue tests have been performed in laboratory air and in a 3% NaCl aqueous solution. The results obtained were compared with those of a conventional beta titanium alloy, Ti–22V–4Al. In tensile tests, 55Ti–30Nb–10Ta–5Zr indicated elasticity and microplasticity in the elastic region. Thus, the elastic modulus slightly decreased with an increasing strain, and the work hardening was minimal during plastic deformation. The mechanical properties of both of the alloys were comparable. The fatigue strength of 55Ti–30Nb–10Ta–5Zr in laboratory air was higher than that of Ti–22V–4Al, which could be attributed to the higher fatigue crack initiation resistance of 55Ti–30Nb–10Ta–5Zr than Ti–22V–4Al, while the resistance to small fatigue crack growth was similar. The fatigue strength of 55Ti–30Nb–10Ta–5Zr in laboratory air and in the 3% NaCl aqueous solution was analogous. In addition, corrosion pits were not observed in the run‐out specimen in the 3% NaCl aqueous solution, indicating a high resistance of 55Ti–30Nb–10Ta–5Zr against corrosion fatigue.  相似文献   

6.
Recent studies have illustrated a predominant role of the residual stress on the fatigue crack growth in friction stir welded joints. In this study, the role of the residual stress on the propagation of fatigue cracks orthogonal to the weld direction in a friction stir welded Ti‐6Al‐4V joint was investigated. A numerical prediction of the fatigue crack growth rate in the presence of the residual stresses was carried out using AFGROW software; reasonable correspondence between the predictions and the experimental results were observed when the effects of residual stress were included in the simulation.  相似文献   

7.
The present study focuses on the effect of microstructural gradients on the fatigue crack growth resistance of Ti‐6Al‐4V and Ti‐6242 titanium alloys. Sharp microstructural gradients from fine‐grained bimodal to coarse‐grained lamellar microstructures were obtained by heat treating only a portion of fine‐grained plates in the β single‐phase field using a high‐frequency induction coil. For fatigue crack growth from a bimodal into a lamellar microstructure, it was found that the initial crack extension past the microstructural transition within the lamellar microstructure shows the same crack growth resistance as the reference bimodal microstructure. Similarly, for fatigue crack growth from a lamellar into a bimodal microstructure, the initial crack extension past the microstructural transition within the bimodal microstructure shows same crack growth resistance as the reference lamellar microstructure. Based on detailed crack front profile investigations using optical light and scanning electron microscopy as well as heat tinting procedures, these findings can be mainly attributed to the effect of the crack front geometry.  相似文献   

8.
This paper presents an experimental investigation of the fracture and fatigue crack growth properties of Ti‐6Al‐4V produced by the Wire + Arc Additive Manufacture (WAAM®) process. First, fracture toughness was measured for two different orientations with respect to the build direction; the effect of wire oxygen content and build strategy were also evaluated in the light of microstructure examination. Second, fatigue crack growth rates were measured for fully additive manufactured samples, as well as for samples containing an interface between WAAM® and wrought materials. The latter category covers five different scenarios of crack location and orientation with respect to the interface. Fatigue crack growth rates are compared with that of the wrought or WAAM® alone conditions. Crack growth trajectory of these tests is discussed in relation to the microstructure characteristics.  相似文献   

9.
High‐cycle fatigue properties were investigated for Ti–5% Al–2.5% Sn ELI alloy with a mean α grain size of 80 μm, which had been used for liquid hydrogen turbo‐pumps of Japanese‐built launch vehicles. At cryogenic temperatures, the fatigue strength in high‐cycle region did not increase in proportion to increments of the ultimate tensile strength and the fatigue strengths at around 106 cycles were about 300 MPa independent of test temperatures. Fatigue cracks initiated in the specimen interior independent of the test temperatures of 4 K, 77 K and 293 K. At 4 K and 77 K, several crystallographic facet‐like structures were formed at crack initiation sites. On the other hand, there were no facet‐like structures that could be clearly identified at the crack initiation sites at 293 K. Low fatigue strengths in longer‐life region at cryogenic temperatures could be attributable to the formation of large sub‐surface crack initiation sites, where large facet‐like structure are formed.  相似文献   

10.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   

11.
S. Mall  V. K. Jain  H. A. Fadag 《Strain》2011,47(Z1):e305-e318
Abstract: The effects of shot‐peening on fretting fatigue crack growth behaviour in titanium alloy, Ti‐6A1‐4V were investigated. Three shot‐peening intensities: 4A, 7A and 10A were considered. The analysis involved the fracture mechanics and finite element sub‐modelling technique to estimate crack propagation lives. These computations were supplemented with the experimentally measured total fretting fatigue lives of laboratory specimens to assess the crack initiation lives. Shot‐peening has significant effect on the initiation/propagation phases of fretting fatigue cracks; however this effect depends upon the shot‐peening intensity. The ratio of crack initiation and total life increased while the ratio of the crack propagation and total life decreased with an increase of shot‐peening intensity. Effects of residual compressive stress from shot‐peening on the crack growth behaviour were also investigated. The fretting fatigue crack propagation component of the total life with relaxation increased in comparison to its counterpart without relaxation in each shot‐peened intensity case while the initiation component decreased. Improvement in the fretting fatigue life from the shot‐peening and also with an increase in the shot‐peening intensity appears to be not always due to increase in the crack initiation resistance from shot‐peened induced residual compressive stress.  相似文献   

12.
This paper is aimed at evaluating the behaviour of small cracks emanating from notches in the Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on prismatic specimens with a central hole. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 56.6 and 100% of the 0.2% yield stress of the material. Microstructural effects were discussed. To this purpose a specific device based on the ‘in situ’ detection of cracks by photomicroscopy was developed. Corresponding results were analysed quantitatively considering the effect of the yielded region at the notch tip by elastic–plastic finite element modelling. Furthermore, information regarding the sites of fatigue crack initiation and propagation path were discussed on the basis of careful fractographic analysis of the specimens. The importance of the two phase α, β microstructure on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. Mechanically and microstructurally long cracks were correlated by linear‐elastic fracture mechanics.  相似文献   

13.
The high‐cycle fatigue and fracture behaviours of Cu‐Be alloy with tensile strength ranging from 500 to 1300 MPa acquired by different treatments were studied. Fatigue crack initiation, fracture surface morphologies, S‐N curves and fatigue strength show obvious differences due to the change of microstructure. At relatively low‐strength level, some fatigue cracks originated from defects; while at high‐strength level, all the fatigue cracks initiated from cleavage facets. It was found that the fatigue ratio increases linearly and fatigue strength changes quadratically with increasing tensile strength, only considering one strengthening mechanism. Finally, the fatigue strengths of various Cu‐Be alloys were summarized.  相似文献   

14.
Based on the proposed concept of the fatigue threshold stress intensity factor ranges, a model has been developed that describes the kinetics of physically small fatigue crack and long fatigue crack growth. The model allows the calculation of the crack growth rate under the regular fully-reversed uniaxial loading from the data on the static characteristics of mechanical properties and the microstructure of the initial material. The crack depth at which the cyclic plastic zone size ahead of the crack tip will exceed the grain size should be considered as a criterion of the small-to-long crack transition. Under high-cycle fatigue conditions physically small fatigue crack growth will be divided into two phases of growth: the first phase is when the crack propagates along the slip planes of individual grains, and the second one is when the crack changes the mechanism of growth and propagates in the plane perpendicular to the loading direction. The model validity has been tested using the experimental data on the growth of the long cracks in specimens of titanium alloy VT3-1 in seven microstructural states and the small cracks in specimens of titanium alloy Ti–6Al–4V and aluminum alloy 2024-T3. Good agreement between the calculated and experimental results is obtained.  相似文献   

15.
Friction stir welding of titanium holds the promise for producing joints with microstructures and mechanical properties that are more comparable to wrought material than traditional fusion welding processes. Extensive data exist on the microstructure and static mechanical properties of titanium friction stir welds, but very little are available on the durability (fatigue) and even less on the damage tolerance (fracture toughness and fatigue crack growth). This paper presents the results of an investigation into the damage tolerance of friction stir welds made in 6 mm thick Ti‐6Al‐4V after a post‐weld heat treatment. It was found that the apparent fracture toughness was lower than the wrought base material, 7–25% depending on the crack orientation relative to the weld, but the crack growth performance (ΔK vs. da/dN) of the weld in the absence of weld‐induced residual stresses was identical to the base material.  相似文献   

16.
Residual stress stability and near‐surface microstructures in high temperature fatigued mechanically surface treated Ti‐6Al‐4V It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly‐stressed metallic components. Deep rolling is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of deep rolling on the low‐cycle and high‐cycle fatigue behavior of a Ti‐6Al‐4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near‐surface microstructures. Preliminary results on laser shock peened Ti‐6Al‐4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ~450 °C, i.e., at an homologous temperature of ~0.4 T/Tm (where Tm is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X‐ray diffraction and in situ transmission electron microscopy observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti‐6Al‐4V at such higher temperatures, despite the almost complete relaxation of the near‐surface residual stresses. In the absence of such stresses, it is shown that the near‐surface microstructures, which in Ti‐6Al‐4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment.  相似文献   

17.
On the titanium alloy Ti‐6Al‐4V a rugged transition from equiaxed to lamellar microstructure was produced by a specific thermomechanical treatment. Equiaxed microstructures of this alloy show plasticity induced crack closure over a wide range of ΔK whereas for lamellar microstructures roughness induced crack closure is observed up to relatively high loadings. Thus by the obtained microstructural transition the observation of a change of the crack closure mode becomes feasible at constant loading ΔK. For the crack propagation from equiaxed to lamellar microstructure, i. e. from plasticity to roughness induced crack closure, the closure load corresponds always to the particular microstructure at the crack tip. In the opposite direction significant closure effects in the crack path interfere leading to an increase of the crack closure load and consequently to a reduction of the crack velocity. Hereby for constant ΔK the crack velocity becomes dependent on the crack propagation direction.  相似文献   

18.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

19.
This paper is aimed at evaluating the influence of bi‐modal and lamellar microstructures on the behaviour of small cracks emanating from notches in α+β titanium Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on double‐edge‐notched specimens. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material yield stress. Crack closure effects were measured by an extensometric technique and discussed. Variations in crack aspect ratio were determined and considered in the ΔK calculation. Corresponding results were discussed by considering the effect of the yielded region at the notch tip calculated by elastic–plastic finite element modelling of the fatigue tests. The importance of the bi‐modal and lamellar microstructures on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. The crack growth rate data obtained were compared with those measured using standard C(T) specimens (long crack).  相似文献   

20.
Experimental investigation was conducted to evaluate the fracture toughness and fatigue crack growth characteristics in selective laser‐melted titanium 6Al‐4 V materials as a follow‐on to a previous study on high cycle fatigue. For both the fracture toughness and crack growth evaluation, the compact tension specimen geometry was used. It was found that the fracture toughness was lower than what would be expected from wrought or cast product forms in the same alloy. This was attributed to the rapidly cooled, martensitic microstructure, developed in the parts. At low stress ratios, the crack growth rates were faster than in wrought titanium but became comparable at higher ratios. The fracture toughness appears to be higher when the crack is oriented perpendicular to the build layers. The difference in the average threshold and critical stress intensity values for the crack growth results for the three orientations was within the scatter of the data, so there was essentially no difference. The same was true for the empirically derived Paris Law constants. Residual stresses were likely to have overshadowed any variation in crack growth because of microstructural directionalities associated with build orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号