首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testing procedures for the determination of the fracture toughness of a material by monotonic loading of fatigue pre‐cracked specimens are well established in standards such as BS 7448, BS EN ISO 15653, ISO 12135, ASTM E1820 and ASTM E1921. However, a review of these standards indicates a wide range of permitted fatigue pre‐cracking forces, whilst the underlying assumption in each standard is that the pre‐cracking conditions do not affect the fracture toughness determined. In order to establish the influence of different fatigue pre‐cracking forces on the fracture toughness, tests were carried out on specimens from an API 5L X70 pipeline steel. Single‐edge notch bend specimens of Bx2B geometry were notched through thickness and tested at temperatures of +20 °C, ?80 °C and ?140 °C to show the fracture behaviour in different regions of the fracture toughness ductile‐to‐brittle transition curve. Fatigue pre‐cracking was conducted on a high‐frequency resonance fatigue test machine over a range of pre‐cracking forces permissible within the various standards and beyond. The results showed that an excessively high pre‐cracking force can result in a significant overestimation of the value of fracture toughness for material exhibiting brittle behaviour, whilst very low fatigue pre‐cracking forces appeared to result in an increase in scatter of fracture toughness. A review of standards indicated that there was a possibility to misinterpret the intention of the ISO 12135 standard and potentially use excessively high pre‐cracking forces. Suggested clarifications to this standard have therefore been proposed to avoid the risk of overestimating fracture toughness.  相似文献   

2.
The relationships between the austenitizing temperature, the quenching medium, and the plane strain fracture toughness have been investigated for the following quenched and tempered low alloy commercial steels: 4130, 4330, 4140, 4340, 300-M and 3140. The specimens were tested in both the as quenched condition, and after tempering at temperatures up to 390°C. By increasing the austenitizing temperature from 870°C to 1200°C, the fracture toughnesses of these alloys was significantly increased and for some alloys increasing the severity of the quench from oil to ice brine, when used after austenitizing at 1200°C, led to still further increases in the fracture toughness. Using a ‘step quench’, which consisted of auitenitizing at 1200°C for 1 hr followed by furnace cooling to 870°C and holding for 12hr before quenching, did not, in general, result in as high a fracture toughness as when the specimens were directly quenched from 1200°C. Associated with the increase in toughness were changes in both the microstructure and the fracture morphology. Alloys 4130, 4340, 4140, and 3140, showed severe intergranular embrittlement when austeoitized at 1200°C and tempered above 200°C, while alloys 4330 and 300-M did not.  相似文献   

3.
Determination of double-K fracture parameter using both analytical and weight function method is carried out in present research. In calculating the cohesive fracture toughness, two situations are divided at critical load. Wedge-splitting tests with ten temperatures varying from 20 to 600 °C are implemented. The complete load-crack opening displacement curves are obtained from which the initial and critical fracture toughness could be calculated experimentally. The validation of double-K fracture model to the post-fire concrete specimens is proved. Meanwhile the weight function method agrees well with the analytical method. Finally, an index to indicate the brittleness of concrete specimen through the ratio of initial fracture toughness and unstable fracture toughness is proposed.  相似文献   

4.
The aim of present paper is to experimentally investigate mixed‐mode fracture behaviour of AM60 Mg alloy at low and elevated temperatures. For this purpose, mode I, 45° mixed‐mode, and mode II tests were conducted using a modified version of Arcan device at three different temperatures. An elastic‐plastic finite element model was used to extract necessary geometric parameters. Crack resistance curves (J‐R) and critical J‐integral of the material were extracted. The results indicated that, for all loading modes, maximum critical J‐integral value was observed at ambient temperature and decreased by either increasing or decreasing the temperature. It was observed that effect of temperature on fracture behaviour is much larger at temperatures above 0°C rather than sub‐zero temperatures. By changing the loading angle to go from mode I to mode II, a decreasing trend was observed in the values of critical fracture parameters at all temperatures. Finally, the surfaces were examined using scanning electron microscopy (SEM).  相似文献   

5.
To determine the effect of cryogenic temperature on the adhesive fracture toughness of an adhesively bonded joint with composite adherends, monotonic mode I adhesive fracture toughness tests were performed at liquid nitrogen temperature (−196 °C) and at room temperature (27 °C). From these experimental tests, the critical strain energy release rate for both test temperatures was evaluated for the selected bonded joint system constructed of carbon-BMI adherends bonded with AF-191M film adhesive. Experimental results exhibit reduced adhesive fracture toughness at the cryogenic temperature and a profound difference in fracture mode.  相似文献   

6.
This study investigated the residual strength of a precracked cold‐formed rectangular hollow section made of novel ultra‐high‐strength steel. The primary goal was to experimentally discover the residual strength of the structure when used in low temperature service conditions. The secondary goal was to predict the residual strength by using a J‐integral approach with nonlinear finite element calculations and to compare these predictions with measured results. The experimental tests were carried out with a beam in four‐point bending loading. The test specimens were taken from a cold‐formed rectangular hollow section fabricated from direct quenched (untempered) ultra‐high‐strength steel S960 QC omitting the annealing in the fabrication process. The tests for final failure were carried out at ?40 °C, with the exception of the first pilot test. There were two kinds of tests: (1) the beam was cyclically loaded until the final fracture or the fatigue precrack was first introduced and (2) the specimen was then subjected to a quasistatic bending loading condition until it failed. The new experimental results matched well with our predictions, and both confirmed the high toughness of ultra‐high‐strength steel in beam construction studied, even at a low ambient temperature.  相似文献   

7.
In the present work, cryorolling (CR) and room temperature rolling (RTR) followed by annealing (AN) at 200°C were carried out to investigate the effects of grain size, precipitates (Mg‐Si‐phases), and AlFeMnSi‐phases on the fracture toughness of 6082 Al alloy. Using the values of the conditional fracture toughness, (KQ), in the critical fracture toughness (KIC) validation criteria, it was found that the sample size is inappropriate, which implies that the conditional fracture toughness obtained cannot be considered as the critical fracture toughness. Therefore, to establish the relative improvement in fracture toughness, the equivalent energy fracture toughness (Kee) and J‐integral were calculated and used. The results show that the values of Kee (89.91 MPa √m) and J (89.86 kJ/m2) obtained for the sample processed via CR followed by AN (CR + AN) are the highest when compared with the other samples processed through CR, RTR, and RTR followed by AN, RTR + AN. Microstructural features such as high fraction of low Taylor factor, high fraction of kernel average misorientation, Si‐rich particles, small size AlFeMnSi‐phases, and mixed mode of failure (transgranular shear and micro‐void coalescence) also support the high fracture toughness in the CR + AN sample. It was also observed that the effect of residual stresses on the fracture toughness of CR and RTR samples is minimal. Therefore, the correlation between microstructure and residual stresses is not considered in the present work due to very small values of the residual stresses for CR and RTR samples and the absence of residual stress from the heat‐treated samples.  相似文献   

8.
Toughness Evaluation for a Thick Weld Joint of AlMg 4,5 Mn at ?196 °C To asses the toughness of a 90 mm thick MIG-weld joint of Al Mg 4.5 Mn fracture mechanics and charpy impact material parameters have been determined at 20 °C and ?196 °C. Additional to the mechanical tests extensive metallographic and fractographic tests on specimens of the weld material and base material were done. The results of the fracture mechanics tests and the fracture analysis show, that now brittle fracture will occur at ?196 °C. The further conclusions are, that charpy energy values are no meaningful basis for a toughness evaluation of such an aluminium weld joint. The joint can be used without restrictions at ?196 °C.  相似文献   

9.
Ships and offshore structures may be operated in areas with seasonal freezing temperatures and extreme environmental conditions. While current standards state that attention should be given to the validity of fatigue design curves at subzero temperatures, studies on fatigue strength of structural steel at subzero temperatures are scarce. This study addresses the issue by analysing the fatigue strength of welded steel joints under subzero temperatures. Although critical weld details in large welded structures are mostly fillet‐welded joints, most published data are based on fatigue crack growth rate specimens cut out of butt‐welded joints. This study analyses fillet‐welded specimens at ?20°C and ?50°C against controls at room temperature. Significantly higher fatigue strength was measured in comparison to estimates based on international standards and data from design codes even at temperatures far below the allowed service temperature based on fracture toughness results.  相似文献   

10.
One of the major difficulties in interlaminar fracture tests of multidirectional laminates is the high tendency for intralaminar cracking and the resulting wavy crack propagation. Experimental work showed that this occurred in double cantilever beam (DCB) tests of cross‐ply laminates having a starter crack on a 0°/90° interface. Moreover, under steady‐state propagation conditions, the apparent values of the critical strain energy release rate GIc were two times higher than those of 0°/0° specimens. In this paper, a finite‐element‐based progressive damage model was used to simulate crack propagation in cross‐ply specimens. The results showed that transverse cracking alone cannot be responsible for the above difference of GIc values. Therefore, the higher propagation GIc values for cross‐plies must be attributed to the more extensive fibre bridging observed and to plastic deformations of the 90° interfacial ply.  相似文献   

11.
This paper proposes a method to predict the thermal ageing effect on fracture toughness of CF8M cast stainless steel. The proposed method is based on multi‐axial fracture strain combined with finite element damage analysis to simulate ductile tearing. Multi‐axial fracture strain loci of un‐aged and aged CF8M are determined by analyzing notched bar tensile test. It is shown that the thermal ageing effect on multi‐axial fracture strain loci can be characterized by one constant. It is further shown that J‐resistance curves of un‐aged and aged CF8M can be predicted well from finite element damage analysis using multi‐axial fracture strain loci. Implication of present results to practical application of crack assessment of aged cast stainless steels is discussed.  相似文献   

12.
Typical thicknesses of high-strength steels (HSS) sheets used in the car industry are inapplicable for standardized testing procedures. The aim of this study is to propose an appropriate methodology for testing and comparing of thin HSS sheets. Microstructures were observed by means of light and scanning electron microscopy. The modified Charpy impact tests and fracture toughness tests were used in order to compare the fracture properties of three different HSS sheets (Docol 1200 M, Multiphase 1200 and BTR 165). Ductile-to-brittle transition curves and tearing resistance (J − Δa) curves were measured. From the fracture toughness linked to the specimen thicknesses the value of fracture toughness KIc was estimated. Fractographic analysis of broken specimens has revealed that due to the fine microstructure of mixed ferrite-martensite fracture mechanism remains ductile even at low temperatures (down to −100°C). __________ Translated from Problemy Prochnosti, No. 1, pp. 155–158, January–February, 2008.  相似文献   

13.
Dynamic fracture behaviour of AISI 1045 steel for compressor crankshaft was studied by experimental and numerical methods. True stress–strain relations of the material under different strain rates were measured, and dynamic constitutive model with consideration to strain‐hardening and strain‐rate hardening was proposed. Dynamic fracture tests loaded by Hopkinson pressure bar were carried out, and fracture toughness was determined using a finite element method with the combination of ABAQUS and Zencrack software. Loading states of the specimen and determination methods of the dynamic fracture toughness were discussed. By comparing the fracture behaviours under quasi‐static and dynamic conditions, it was found that the fracture modes exhibited a transition from ductile to brittle fracture with the increasing loading rate, and the dynamic fracture toughness value was less than the quasi‐static one.  相似文献   

14.
To attain a wear‐resistant material compatible with high hardness and high toughness, Hadfield steel matrix was reinforced by oriented high chromium cast iron bars, through inserting high chromium alloys flux‐cored welding wires into Hadfield steel melt at 1500 ± 10 °C. The obtained composites were investigated by XRD, SEM, micro‐hardness, three‐body abrasion wear and impact toughness testers. The results show that the alloy powders inside the flux‐cored welding wires can be melted by the heat capacity of Hadfield steel melt and in situ solidified into high chromium cast iron bar reinforcements tightly embedded in the matrix. The micro‐hardness of reinforcements of the water‐quenched composite is about four times higher than that of the matrix. The impact toughness of the water‐quenched composite is higher than that of the as‐cast composite and lower than that of Hadfield steel, and its fracture mechanism is very complicated and refers to brittle and ductile mixture fracture mode. The excellent impact toughness and better wear resistance of the water‐quenched composite are attributed to combine fully the advantages and avoid the drawbacks of both Hadfield steel and high chromium cast iron. Additionally, in industrial application, the pulverizer plate produced by this composite, has also better wear resistance compared to the reference Hadfield steel pulverizer plate.  相似文献   

15.
The thick plate induces the variation of mechanical properties and fracture toughness, especially in cold regions. At the low temperature, the brittle behaviour of steel becomes worse. A series of tests (such as uniaxial tensile test and three‐point bending test) were carried out at low temperature to investigate the mechanical properties and fracture toughness of structural steel plates of Q345B with thickness of 60 to 150 mm, as well as the fracture toughness of 150 mm thick butt welded plate. The test specimens are all manufactured from plates along thickness with small size, and the tensile test specimens included through‐thickness specimens additionally. The ductility index (percentage reduction of area) and the fracture toughness index (critical CTOD values) all decrease with the temperature decreases and the distance from plate surface increases. The results obtained in this paper provide technical basis for preventing brittle fracture of thick plate steel structures in cold regions.  相似文献   

16.
Fracture and fatigue tests have been performed on micro‐sized specimens for microelectromechanical systems (MEMS) or micro system technology (MST) applications. Cantilever beam type specimens with dimensions of 10 × 12 × 50 μm3, approximately 1/1000th the size of ordinary‐sized specimens, were prepared from a Ni–P amorphous thin film by focused ion beam machining. Fatigue crack growth and fracture toughness tests were carried out in air at room temperature, using a mechanical testing machine developed for micro‐sized specimens. In fracture toughness tests, fatigue pre‐cracks were introduced ahead of the notches. Fatigue crack growth resistance curves were obtained from the measurement of striation spacing on the fatigue surface, with closure effects on the fatigue crack growth also being observed for micro‐sized specimens. Once fatigue crack growth occurs, the specimens fail within one thousand cycles. This indicates that the fatigue life of micro‐sized specimens is mainly dominated by a crack initiation process, also suggesting that even a micro‐sized surface flaw may be an initiation site for fatigue cracks which will shorten the fatigue life of micro‐sized specimens. As a result of fracture toughness tests, the values of plane strain fracture toughness, KIC, were not obtained because the criteria of plane strain were not satisfied by this specimen size. As the plane strain requirements are determined by the stress intensity, K, and by the yield stress of the material, it is difficult for micro‐sized specimens to satisfy these requirements. Plane‐stress‐ and plane‐strain‐dominated regions were clearly observed on the fracture surfaces and their sizes were consistent with those estimated by fracture mechanics calculations. This indicates that fracture mechanics is still valid for such micro‐sized specimens. The results obtained in this investigation should be considered when designing actual MEMS/MST devices.  相似文献   

17.
Fracture tests of extra deep drawn steel sheet were carried out at ambient temperature to investigate the effect of loading rate on fracture toughness. To determine fracture limits, fracture tests and finite‐element cohesive zone model simulation tool are used. Fracture tests are conducted at various loading rates (0.1–2.5 mm min?1). An alternative constant traction separation law is used to account for maximum load and large load line displacements. Experimental findings, as well as cohesive zone model, show that the loading rate has no significant effect on fracture toughness till 0.4 mm min?1; however, there is a sharp decrease in fracture toughness beyond 0.4 mm min?1.  相似文献   

18.
The effects of temperature on the fast fracture behavior of aluminum nitride with 5 wt% Y2O3 ceramic were investigated. Four-point flexural strength and fracture toughness were measured in air at several temperatures (30–1,300 °C). The flexural strength gradually decreased with the increase of temperature up to 1,000 °C due to the change in the fracture mode from transgranular to intergranular, and then became almost constant up to 1,300 °C. Two main flaw types as fracture origin were identified: small surface flaw and large pores. The volume fraction of the large pores was only 0.01%; however, they limited the strength on about 50% of the specimens. The fracture toughness decreased slightly up to 800 °C controlled by the elastic modulus change, and then decreased significantly at 1,000 °C due to the decrease in the grain-boundary toughness. Above 1,000 °C, the fracture toughness increased significantly, and at 1,300 °C, its value was close to that measured at room temperature.  相似文献   

19.
The effect of oxygen contained in hydrogen gas environment as an impurity on hydrogen environment embrittlement (HEE) of A333 pipe steel was studied through the fracture toughness tests in hydrogen gases. The oxygen contents in the hydrogen gases were 100, 10, and 0.1 vppm. A significant reduction in the J‐Δa curve was observed in the hydrogen with 0.1‐vppm oxygen. Under given loading conditions, the embrittling effect of hydrogen was completely inhibited by 100 vppm of oxygen. In the case of the hydrogen with 10‐vppm oxygen, initially the embrittling effect of hydrogen was fully inhibited, and then subsequently appeared. It was confirmed that 1‐vppm oxygen reduced the embrittling effect of hydrogen. The results can be explained by the predictive model of HEE proposed by Somerday et al.  相似文献   

20.
Investigation of geometrical parameters for flattened Brazilian disc method is important, since this is a simple and attractive method for mode I fracture toughness testing on rock cores. Evaluating numerical modeling results, a parametric equation in terms of principal stresses at the center of the disc and the loading angle of the flattened end was developed. An equation was proposed for maximum stress intensity factors at critical crack lengths around stable to unstable crack propagation. Comparing fracture toughness results of flattened Brazilian disc method to the results of the suggested cracked chevron notched Brazilian disc method, geometrical parameters for flattened Brazilian discs were investigated. Diameter, loading angle of flattened ends, and thickness of andesite rock core specimens were changed to obtain comparable results to the suggested method. The closest results to the suggested method were obtained by 54 mm diameter discs with loading angles larger than 32°, and thicknesses between 19 and 34 mm. Results were confirmed by the flattened Brazilian disc tests on a marble rock. In flattened Brazilian disc tests with smaller loading angles and larger diameters, larger fracture toughness values than the results of the suggested cracked chevron notched were obtained. However, excluding tests with large loading angles over 27°; specimen size was less effective on the results of these tests. Critical crack length parameters computed from modeling and experiments were close to each other for the flattened Brazilian disc specimens with smaller loading angles around 20° and thickness/radius ratio equal or less than 1.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号