首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The part-through semi-elliptical surface flaw is commonly encountered in engineering practice. Proper characterization of plasticity-induced crack closure is necessary to predict both flaw growth and flaw shape evolution under cyclic loading. Three-dimensional elastic-plastic finite element analyses are used to model the plasticity-induced closure developed along the surface flaw crack front, and the subsequent crack opening behavior under constant amplitude loading. Resulting crack opening stresses are compared with results from a strip-yield model and with experimentally measured values reported in the literature. It was found that the computed values were larger than those measured.  相似文献   

2.
采用不同应力比条件下的16MnR钢紧凑拉伸试样,设计了三种有限元分析模型,即不考虑加载历史效应的静态裂纹扩展模型,同时考虑加载历史和裂纹闭合的动态裂纹扩展模型以及仅考虑加载历史的伪动态裂纹扩展模型,对疲劳裂纹闭合过程、裂纹尖端的应力-应变迟滞环、疲劳损伤和裂纹扩展速率进行了数值模拟与分析,进而着重探讨了加载历史和裂纹闭合影响疲劳裂纹扩展行为的交互作用机制。结果表明:对于同类分析模型,应力比越大越不容易产生裂纹闭合;而在应力比相同的情况下,加载历史引起的残余压应力对裂纹闭合有明显的促进作用。裂纹闭合效应阻碍了平均应力的松弛,减小了裂纹尖端附近的应力-应变场强度、疲劳损伤和裂纹扩展速率,而加载历史引起的残余压应力则加快了平均应力的松弛和抑制了棘轮效应。与实验结果比较发现,只有同时考虑了裂纹闭合效应和加载历史影响的动态裂纹扩展模型,才能对疲劳裂纹扩展行为进行准确、定量的模拟。  相似文献   

3.
The crack opening/closure load concept is widely used to justify the fatigue crack growth behaviour with different load ratios and the load interaction effects. Many experimental techniques have been proposed to measure crack opening/closure load, and amongst them, compliance offset methods are widely used for their simplicity and consistency. In this paper, a modification of the ASTM method is proposed. The new method has a more general applicability as it can be applied to broadband variable amplitude loads. The method is described in detail and is applied on a 2024‐T351 aluminium alloy. The good correlation of the opening load estimated with the new method and the strip‐yield model implemented in Nasgro indicates that the new method could be used as an alternative for the cases where complex variable amplitude loads occur.  相似文献   

4.
It is a difficult task to predict fatigue crack growth in engineering structures, because they are mostly subjected to variable amplitude loading histories in service. Many prediction models have been proposed, but no agreed model on fatigue life prediction adequately considering loading sequence effects exists. In our previous research, an improved crack growth rate model has been proposed under constant amplitude loading and its good applicability has been demonstrated in comparison with various experimental data. In this paper, the applicability of the improved crack growth rate model will be extended to variable amplitude loading by modifying crack closure level based on the concept of partial crack closure due to crack‐tip plasticity. It is assumed in this model that the crack closure level can instantly go to the peak/valley due to a larger compression/tensile plastic zone resulted from the overload/underload effect, and gradually recovers to the level of constant amplitude loading with crack propagation. To denote the variation in the affected zone of overload/underload, a modified coefficient based on Wheeler model is introduced. The improved crack growth rate model can explain the phenomena of the retardation due to overload and the tiny acceleration due to underload, even the minor retardation due to overload followed by underload. The quantitative analysis will be executed to show the capability of the model, and the comparison between the prediction results and the experimental data under different types of loading history will be used to validate the model. The good agreement indicates that the proposed model is able to explain the load interaction effect under variable amplitude loading.  相似文献   

5.
To quantify the growth behaviour of fatigue cracks growing towards microstructural barriers or elastic obstacles, parametric solutions are obtained for crack-tip opening displacement and plasticity-induced crack closure of a mode I fatigue crack growing towards elastic obstacles. Three common bi-material systems are analysed using the finite element method, in which both constituent materials have identical elastic properties but only the phase that contains the crack can deform plastically. It has been found that under monotonic loading the crack-tip opening displacement decreases as the crack-tip approaches the interface boundary, but reaching a non-zero value when the crack-tip terminates at the boundary. For a fatigue crack growing under constant amplitude loading, the crack-closure stress has been found to increase as the crack grows towards the barrier. Based on these results a mechanistic model is proposed to quantify the influence of stress level on the fatigue threshold of microstructurally small fatigue cracks, with predictions being in close agreement with experimental data.  相似文献   

6.
This paper describes the effects of a single overload event, within otherwise constant amplitude cycles, on the plasticity‐induced closure process for mode I fatigue crack growth in the small‐scale yielding (SSY) regime. The 3‐D finite element (FE) analyses extend the initially straight, through‐thickness crack front by a fixed amount in each load cycle, using a node release procedure. Crack closure during reversed loading occurs when nodes behind the growing crack impinge on a frictionless, rigid plane. A bilinear, purely kinematic hardening model describes the constitutive response of the elastic–plastic material. Extensive crack growth in the analyses, both before and after the overload, allows the crack to grow out of the initial and the post‐overload transient phases, respectively. The work presented here shows that the large plastic deformation in the overload cycle reduces the crack driving force through enhanced closure. Further, the residual plastic deformations due to the overload cause a disconnected pattern of closure in the wake long after the crack front passes through the overload plastic zone. The computational studies demonstrate that the 3‐D scaling relationship for crack opening loads established in our earlier work for constant amplitude cycling (with and without a T‐stress) also holds before, during and after the overload event. For a specified ratio of overload‐to‐constant amplitude loading (ROL=KOLmax/Kmax) , the normalized opening load (Kop/Kmax) at each location along the crack front remains unchanged when the constant amplitude peak load (Kmax) , thickness (B) and material flow stress (σ0) all vary to maintain a fixed value of . The paper concludes with a comparison of the post‐overload response predicted by the 3‐D analyses and by the conventional Wheeler model.  相似文献   

7.
The effect of single cycle overloads, ranging in size from 10% to 50%, on fatigue crack growth behaviour in compact tension specimens subject to constant amplitude loading with an R-ratio of 0.6 has been investigated using electronic speckle pattern interferometry. The resultant displacement fields have been used to evaluate crack opening and closing loads and effective stress intensity factors using the Christopher–James–Patterson model that takes explicit account of the effect of crack tip and wake plasticity on the singularity-dominated elastic fields surrounding the crack. The results show that the crack opening loads and effective stress intensity factors at the overload event are proportional to the magnitude of the overload and that period of post-overload retardation of crack growth is also proportional to the magnitude of the overload. These findings demonstrate the usefulness of the CJP model and should help enhance understanding of plasticity-induce closure phenomena.  相似文献   

8.
In metallic materials, growing cracks will remain closed or partially closed for a portion of the applied cyclic load as a consequence of plastically deformed material left in the wake of a growing crack, surface roughness along the crack surfaces, or corrosion debris. Proper characterization of this crack closure and the subsequent opening load is required for accurate prediction of crack growth. In the laboratory, global load–displacement data are commonly used in conjunction with a data reduction technique to estimate the opening load for a growing crack. Different data reduction techniques will be compared, and the influence of data smoothing will be demonstrated, using AA 7075-T651 specimens tested under constant amplitude cyclic loading with load ratios R = 0.1, 0.2, and 0.3. The ratio of maximum stress intensity factor to plane strain fracture toughness was approximately K max / K Ic = 0.5. The measured crack opening loads are also compared with predictions obtained from two different strip-yield models and three-dimensional elastic–plastic finite element analyses. Results show the necessity of using smoothed data, and the poor behaviour of the compliance offset data reduction technique, when analysing high load ratio data. A modification to this technique is proposed which improves crack opening load estimates. Overall, the analytical model predictions compare well with the experimental results; especially those results generated using the modified compliance offset technique.  相似文献   

9.
The fatigue process near crack is governed by highly concentrated strain and stress in the crack tip region. Based on the theory of elastic–plastic fracture mechanics, we explore the cyclic J-integral as breakthrough point, an analytical model is presented in this paper to determine the CTOD for cracked component subjected to cyclic axial in-plane loading. A simple fracture mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack tip opening displacement (ΔCTOD) and the crack growth rate (da/dN). In order to validate the model and to calibrate the model parameters, the low cycle fatigue crack propagation experiment was carried out for CT specimen made of Q345 steel. The effects of stress ratio and crack closure on fatigue crack growth were investigated by elastic–plastic finite element stress–strain analysis of a cracked component. A good comparison has been found between predictions and experimental results, which shows that the crack opening displacement is able to characterize the crack tip state at large scale yielding constant amplitude fatigue crack growth.  相似文献   

10.
The behaviour of a composite test specimen with an embedded delamination subjected to transverse tension has been investigated through experimental testing and finite element (FE) analyses. The testing program consisted of specimens in two geometrical configurations; square and rectangular delamination. The initiation and growth of the delamination was numerically predicted by fracture mechanics. FE models were analysed with both MSC.Nastran and Abaqus FE codes. The MSC.Nastran model was used to calculate strain energy release rates employing a crack tip element methodology. The Abaqus model was evaluated using the virtual crack closure technique. Both approaches accurately predicted failure initiation locations as observed in the test specimens. Failure loads were also well predicted. The mode mix at the crack tip in the proposed specimen was found to be similar to the mode mix expected in a conventional in-plane compression specimen.  相似文献   

11.
Numerical analyses based on the finite element (FE) method and remeshing techniques have been employed in order to develop a damage tolerance approach to be used for the design of aeroengines shaft components. Preliminary experimental tests have permitted the calculation of fatigue crack growth parameters for the high strength alloy steel adopted in this research. Then, a robust numerical study have been carried out to understand the influence of various factors (such as: crack shape, crack closure) on non-planar crack evolution in solid and hollow shafts under mixed-mode loading. The FE analyses have displayed a satisfactory agreement compared to experimental data on compact specimens (CT) and solid shafts.  相似文献   

12.
The literature on some aspects of the influence of variable amplitude loading on fatigue crack growth has been reviewed. In particular the importance of residual stresses, fatigue crack closure, microstruture, geometry and environment on the fatigue crack growth of long, through-thickness cracks following overloads, underloads and overload-underload combinations in Mode 1 opening have been identified. Other behaviour, including the influence of temperature, frequency and the effects of mixed-mode loading, is beyond the scope of this review. Areas of work requiring further investigation have been proposed.  相似文献   

13.
Abstract— A three dimensional, elastic-plastic, finite element analysis of fatigue crack growth and plasticity-induced crack closure has been performed for a range of small, semi-circular cracks. Predicted crack opening displacements have been compared with data obtained from in-situ SEM measurements for a coarse-grained aluminium alloy 2024-T351. The magnitude of fatigue crack closure measured from in-situ SEM measurements was consistently higher than that predicted from the finite element analysis. It is deduced that the higher closure stresses obtained from in-situ SEM measurements are due to the contact of asperities on the fatigue crack surfaces. A simple mathematical model is suggested to describe the fatigue crack closure stress caused by the combination of both a plastic wake and asperities on the fatigue crack surfaces. The predicted fatigue crack closure stresses and their dependence on crack size are consistent with experimental measurement.  相似文献   

14.
Strain energy release rate (SERR) components for an interface crack in two-dimensional orthotropic media were obtained using finite element (FE) analysis. The elastic analysis of interface cracks results in oscillatory singularity. This is prevalent over a very small zone near the crack-tip, where the traction free crack faces undergo unacceptable deformations resulting in the interpenetration of crack faces. The individual and total strain energy release rates are calculated using modified crack closure integral (MCCI) method. Although the total SERR converges, it is observed that the individual SERR components are dependent on the values of the smallest element size (Δa) at the crack-tip. It is observed that both the crack opening and sliding displacements are oscillatory when the interpenetration is allowed in the contact zone. The contact zone length (rc) calculated using Suo's analytical expression [Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. Royal Soc. London, Ser A427 (1990) 331] is in good agreement with the results from FE analysis and MCCI calculations. However, for the chosen material properties, the estimated contact zone length based on the analytical expression proposed by Ni and Nemat-Nasser [J. Mech. Phys. Solids 39 (1991) 113] exhibits a large deviation from the present FE results. It is seen that the mode-II behavior dominates the crack growth, even under mode-I loading.  相似文献   

15.
An advanced procedure has been developed to analyse the fatigue crack growth in the residual stress field. The method is based on an extension of the strip yield crack closure model for part-through crack problems. In this method, the residual stress relaxation due to both the fatigue loading and the crack growth is considered. It has been shown that the effect of the residual stress can be reasonably analysed according to fracture mechanics methods so long as the residual stress field and its redistribution can be correctly evaluated and the elastic-plastic crack closure analyses are performed. Several examples are provided for the constant and variable amplitude loading conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Fatigue crack growth rate properties are typically determined by experimental methods in accordance with ASTM Standard E647. These traditional methods use standard notched specimens that are precracked under cyclic tensile loads before the main test. The data that are produced using this approach have been demonstrated elsewhere to be potentially adversely affected by the test method, particularly in the threshold region where load reduction (LR) methods are also required. Coarse‐grained materials that exhibit rough and tortuous fatigue surfaces have been observed to be strongly affected by the tensile precracking and LR, in part because the anomalies caused by crack closure and roughness‐induced closure become more important. The focus of the work reported in this paper was to further develop methods to determine more accurate fatigue crack growth rate properties from threshold through to fracture for coarse‐grained, β‐annealed, titanium alloy Ti‐6Al‐4V extra low interstitial thick plate material. A particular emphasis was put upon the threshold and near threshold region, which is of strong importance in the overall fatigue life of components. New approaches that differ from the ASTM Standard included compression precracking, LR starting from a lower load level and continuing the test beyond rates where crack growth would otherwise be considered below threshold. For the threshold regime, two LR methods were also investigated: the ASTM method and a method where the load is reduced with crack growth such that the crack mouth opening displacement is held constant, in an attempt to avoid remote closure. Constant amplitude fatigue crack growth rate data were produced from threshold to fracture for the titanium alloy at a variety of stress ratios. Spike overload tests were also conducted These data were then used to develop an improved analytical model to predict crack growth under spectrum loading and the predictions were found to correlate well with test results.  相似文献   

17.
Mixed mode fatigue crack growth: A literature survey   总被引:13,自引:0,他引:13  
The applications of fracture mechanics have traditionally concentrated on crack growth problems under an opening or mode I mechanism. However, many service failures occur from growth of cracks subjected to mixed mode loadings. This paper reviews the various criteria and parameters proposed in the literature for predictions of mixed mode crack growth directions and rates. The physical basis and limitations for each criterion are briefly reviewed, and the corresponding experimental supports are discussed. Results from experimental studies using different specimen geometries and loading conditions are presented and discussed. The loading conditions discussed consist of crack growth under mode II, mode III, mixed mode I and II, and mixed mode I and III loads. The effects of important variables such as load magnitudes, material strength, initial crack tip condition, mean stress, load non-proportionality, overloads and crack closure on mixed mode crack growth directions and/or rates are also discussed.  相似文献   

18.
19.
The usual analysis procedure for variable amplitude fatigue calculates fatigue damage based on constant amplitude strain controlled fatigue tests of smooth specimens. The resulting predictions are typically nonconservative due to a load interaction effect in variable amplitude fatigue. This paper reviews recent work which shows that large loads in a service load history decrease the crack opening stress and as a result increase the effective strain range for subsequent small cycles. A new strain–life fatigue test is introduced in which periodic large strain cycles reduce the crack opening stress for subsequent smaller cycles. The overloads are applied frequently enough that closure free fully open crack growth is achieved for the small cycles in the long life regime. An effective strain–life curve is derived and a crack opening stress equation calibrated by comparison of constant amplitude and effective strain ranges at given fatigue lives. The use of the effective strain–life curve in predicting fatigue lives is illustrated for service strain histories and for a variable amplitude load sequence applied to notched specimens. The predictions are good but somewhat conservative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号