首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nd-Fe-B磁体根据Nd2Fe14B单晶饱和磁化强度的理论值具有(BH)max为512kJ/m3(64MGOe)的磁特性,但目前能够大量稳定生产的Nd-Fe-B磁体之(BH)max仅为318kJ/m3。为了提高其磁性能,研究了Nd-Fe-B烧结磁体的各种构成相,即T1相(Nd2Fe14B相)、T2相(Nd11Fe4B4相)和富Nd相的相比率,对其烧结行为的影响,以及这些相的存在比率与其磁特性的关系。采用纯度为99.5%的钱、纯度为99.9%的电解铁和硼铁(B20.2%,余为Fe)为原料,在高频电炉中熔炼成Nd15Fe77B8成分的熔体,在铁模中铸锭,制备成粉末和一定规格的试样…  相似文献   

2.
研究了NdFeB粉末中添加1wt%Dy2O3粉末对烧结NdFeB磁体微观结构的影响,研究发现,在烧结过程中,Dy2O3中的Dy与Nd2Fe14B中的Nd发生了置换反应,Dy进入Nd2Fe14B相,形成了(Nd,Dy)2Fe14B相,提高了磁体的矫顽力。  相似文献   

3.
Nd-Fe-Co-Cu-Nb-B系合金快淬薄带有可能获得很好的磁特性,如果进一步用Pr取代合金中的一部分Nd,由于所形成的Pr2Fe14B型结晶相具有很高的各向异性磁场,因而可得到很大的矫顽力。因此,日本明冶大学的理工学院为了制作高性能的α-Fe/(Nd,Pr)2Fe14B系交换弹簧磁体,采用Pr置换一部分Nd的不同成分的Nd-Pr-Fe-Co-Cu-Nb-B系合金熔体通过单辊旋淬法制得的薄带,研究了旋淬时冷却辊周速和非晶薄带的热处理等条件对于薄带磁体的磁性能和物理性能的影响。 本试验所用的原料为钕、镨、铁、钴、铜、铌纯金属和硼类金属。用于喷制旋淬薄带用的熔体成分为(Nd1-xPrx)9Fe75.5Co8Cu0.5Nb1B6,Pr量x=0.0、0.3、0.5、0.7、1.0。旋淬薄带是在高纯氢气氛中将合金熔体喷于辊速为10~15m/s的单辊表面,所得非晶薄带在高纯氩气氛中于625~700℃经过0~10min的晶化处理。薄带试样经过4.8MA/m脉冲充磁后,用振动试样磁强计测定磁特性、居里温度和温度特性。用粉末X射线衍射法分析了薄带试样的结晶结构,用示差热分析仪测定非晶带的晶化温度。研究结果证明:用辊速12.5m/s的单辊旋淬制得的富Pr非晶Nd2.7Pr6.3Fe75.5Co8Cu0.5Nb1B6合金带,经675℃最佳晶化热处理后所得纳米晶(平均粒径37nm)交换弹簧磁体的(BH)max为156.16kJ/m3,其Jr和HCJ的温度系数分别为α(Jr)=-0.036%/℃(可逆),α(HCJ)=-0.46%/C(不可逆)。加Pr使矫顽力有所提高,但并未达到预期值。  相似文献   

4.
作为提高Nd-Fe-B系烧结磁体磁特性的手段有(l)提高生相的饱和磁化强度,(2)增加磁体中的主相体积分量,*提高取向度,(4)提高磁体密度,(5)控制晶粒度等方法.一般稀土磁体的稀土元素是很活性的,容易形成稀土氧化物而以非磁性夹杂物形式存在,为了增加生相体积分量就必须减少这种非磁性夹杂物.因此,为开发高性能Nd系磁体,确立低氧化生产技术十分关键.日本日立金属公司提出的湿式成形技术--HILOP法(即日立低氧法),是大量生产低氧高性能Nd-Fe-B系烧结磁体的有效方法。HILOP法是将Nd-Fe-B粗粉原料装火喷射式超…  相似文献   

5.
研究了Nd2Fe14B单晶、传统烧结NdFeB磁体和放电等离子烧结(简称SPS)NdFeB磁体在电解液溶液中的电化学特性。采用扫描电子显微镜和电子能谱分析了磁体的微观组织成分。结果表明在3.5%NaCI溶液的极化曲线中,Nd2Fe14B单晶具有最高的电化学腐蚀电位,放电等离子烧结NdFeB磁体的腐蚀电位高于传统烧结NdFeB磁体。与传统烧结NdFeB磁体相比,放电等离子烧结NdFeB磁体富Nd相具有独特的分布形态,主相Nd2Fe14B晶粒细小、均匀,富钕相在主相晶粒边界上分布较少,主要集中在三角晶界处。这种组织结构有效地抑制了磁体沿富钕相发生晶间腐蚀的过程,磁体因此具有良好的耐腐蚀性能。此外,从不同稀土含量的烧结NdFeB磁体的高压加速实验中可以看出磁体的腐蚀速度随稀土含量的增加而增大。以上结果表明富Nd相的化学特性及其分布状态和含量是决定合金耐蚀性能的关键,它在合金中以网络状分布在主相晶粒边界上,并决定了烧结NdFeB易于发生选择性晶间腐蚀,从而导致耐蚀性差。  相似文献   

6.
采用单辊急冷法熔融NdFeB烧结磁体(工业产品)制取快淬永磁合金.合金薄带具有很高的矫顽力,剩磁比达到0.5以上.合金带经过适当的热处理,可消除制备冷速过高时退磁曲线及磁性能的缺陷.随着烧结磁体磁性能等级提高,其快淬合金的剩磁和最大磁能积均提高,内禀矫顽力下降.由N50烧结磁体制备的快淬合金的较佳性能为:Br=0.84T、Hci=959kA/m、(BH)max=112 kJ/m3.X射线衍射分析表明快淬合金以Nd2Fe14B相晶粒为主,只有少量杂相.  相似文献   

7.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

8.
采用快淬法制备了镨基(Nd,Pr)10.5-x Dyx Fe83.5B6(x=0.0,0.5,1.0,1.5,2.0,2.5)系列粘结磁体,研究了Dy元素添加对快淬合金显微组织结构、磁性能及快淬薄带热稳定性的影响。与Nd2Fe14B相比,硬磁相Dy2Fe14B具有较高的磁晶各向异性场HA和较低的饱和磁极化强度Js,因此,Dy元素添加能显著提高合金的内禀矫顽力Hcj,但会降低合金的剩磁Br。Dy元素替代Nd/Pr元素,增强了快淬薄带的热稳定性,提高了晶化退火温度。较高的晶化退火温度,使快淬薄带中已经形成的微晶更容易长大,形成一些粗大晶粒,降低了粘结磁体的磁性能。1.0%是较佳的Dy元素添加量,(Nd,Pr)9.5Dy1Fe83.5B6合金快淬粘结磁体的最大磁能积(BH)max为71.6 k J/m3,剩磁Br为0.638 T,内禀矫顽力Hcj为611 k A/m。  相似文献   

9.
利用熔体快淬和晶化处理的方法制备了快淬Fe3B/Nd2Fe14B永磁材料。采用XRD,DTA,VSM等方法对合金的晶化行为和磁性能进行研究。结果表明:对于Fe3B/Nd2Fe14B熔体快淬永磁粉末,升温速率对各相的析出和分解温度有一定的影响。完全过淬的Nd4.5Fe77B18.5和Nd4Fe77Cr0.5B18.5合金熔体快淬粉在进行973K,7min晶化处理过程中,首先形成Nd2Fe23B3相,然后Nd2Fe23B3相发生分解,其产物为Fe3B/Nd2Fe14B,此后再没有发生其它的相转变。当晶化温度大于953K,保温10min后,样品的剩磁、矫顽力和最大磁能积明显提高。微量元素Cr的添加对相转变温度有影响,同时可以细化晶粒,提高矫顽力,从而改善材料的永磁性能。  相似文献   

10.
成问好  李卫  李传健  李岫梅  董生智 《金属学报》2001,37(12):1271-1275
对用混合合金法制备的Nd7.69Dy6.62Fe64.33Co14.83B6.53/Ga烧结磁体的磁性和微观结构进行了研究。结果表明:添加0.5%(质量分数)的Ga后;磁体的iHc由1232kA/m升高到1819kA/m,在200℃放置0.5h后的磁通不可逆损失由33.3%下降到5%以下,当Ga的添加量达到1.0%左右时,Ga的作用达到最大值,微观结构分析表明,不添加Ga磁体的晶粒边界,尤其是晶界角隅处多呈现弯曲和凹凸不平的形状,添加Ga磁体的晶粒边界则呈现平滑和近似直线的形状,烧结过程中Ga原子置换Nd2Fe14B相中Fe原子形成Nd2Fe14-xGaxB相,与此同时,被置换的Fe原子进入液相与富和Nd相、富B相反应形成新的Nd2Fe14B(或Nd2Fe14-xGaxB)相,这是导致磁体的磁性和微观结构发生变化的主要原因。  相似文献   

11.
介绍了添加Dy烧结NdFeB磁体的制备方法,包括单相合金粉末烧结法、双相合金粉末烧结法和晶界扩散法,并总结了Dy元素对烧结NdFeB磁体显微结构和磁性能的影响。添加Dy能细化磁体晶粒,并且在Nd2Fe14B晶粒周围形成富稀土层,从而显著提高磁体的矫顽力性能。  相似文献   

12.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

13.
以Nd2Fe14B为基础的稀土永磁体具有大磁化强度、高居里温度和高磁各向异性.尽管进行了大量研究,但没有找到磁性超过Nd2Fe14B的新型永磁材料.目前,大量的注意力集中在有可能超过Nd2Fe14B烧结磁体的交换耦合纳米晶复合磁体,这种磁体是由纳米尺度的软磁和硬磁化合物晶粒组成的.在Nd-Fe-B系统中,t-Fop、Fop和肝Fe为软磁相,Nd2Fe14B为硬磁相.纳米品复合磁体具有由软磁相造成的大过饱和磁化强度和硬磁相产生的高桥涵磁力,因此,这种材料的进性依赖于复合相的种类和技量.同时,深加少量的元素(AISt,y,CrGa,An,蛇等)…  相似文献   

14.
为改善纳米晶交换耦合Nd2Fe14B/α-Fe永磁合金微结构以提高磁性能,用熔体快淬和动态晶化热处理的方法制备了纳米晶交换耦合Nd2Fe14B/α-Fe永磁体,采用XRD和TEM等方法系统研究了动态晶化热处理对Nd10.5(FeCoZr)83.4B6.1永磁体磁性能和显微组织的影响。结果表明:与传统晶化相比,动态晶化可以在相同的晶化温度下缩短晶化时间,同时能细化晶粒,增强晶粒间磁交换耦合作用,提高磁性能。Nd10.5(FeCoZr)83.4B6.1合金快淬薄带经700℃,10min动态晶化热处理后,制得的粘结磁体获得最佳磁性能,剩磁Br=0.685T,内禀矫顽力Hcj=732kA/m,磁感矫顽力Hcb=429kA/m,最大磁能积(BH)m=75kJ/m^3。  相似文献   

15.
磁性材料的现状与展望   总被引:1,自引:0,他引:1  
1 永久磁体 永久磁体使用在各个领域,其中NdFeB磁体是代表性的稀土类磁体,其最大磁能积高,所以可使装置小型化,高性能化,是目前产量最多的稀土类永久磁体。而铁磁体具有好的性价比,其产量比稀土类磁体还高。相比之下,阿尔尼科等合金类磁体已失去优势,研究也已停滞。目前值得注意的是NdFeB烧结磁体性能的显著提高,氢化-歧化-脱氢-合成法(HDDR)、纳米组成磁体等粘结磁体的飞速发展,用镧、锌及钴置换的高性能铁磁体等。 NdFeB系烧结磁体 NdFeB系烧结磁体具有富钕相的组成,析出的富钕相可促进烧结,除去主相(Nd2Fe14B)表面…  相似文献   

16.
用熔体快淬法制备了高性能纳米双相耦合Nd2Fe14B/α-Fe磁体,研究了Cu/Ti复合添加对Nd2Fe14B/α-Fe纳米双相磁体磁性能和相分解的影响,实验结果表明,Cu和Ti复合添加可提高快淬带的晶化温度,并且改变α-Fe相析出方式,α-Fe直接从TbCu7结构的亚稳相分解中析出,而不是从非晶相中析出,这有利于形成α-Fe相晶粒细小且均匀分布的微结构,其最优磁性能为Hc=384kA/m(4.8kOe),σ=110Am^2/kg(110emu/g),(BH)max=120kJ/m^3(15MGOe)。  相似文献   

17.
磁粉与树脂结合制成的各种粘结磁体种类繁多,其应用之广不胜枚举,其工业产量逐年增长,日本在近年来的粘结磁体总产量已占永磁体总产量的23%左右.稀土系粘结磁体在日本的开发经历,自从对年代以来先后开发了SmCo5(1-5)系、Sm2TM17(2—17)系(TM代表CO等过渡金属)、Nd-Fe-B系等,自从1988年以来各向同性Nd系粘结磁体产量的增长速度十分惊人.粘结磁体的磁特性较之用同样磁粉制成的烧结磁体低得多,主要是因为有非磁性树脂粘结剂存在的结果。从数值上表示,以同种磁粉的烧结磁体的(BH)。作为lbo%,压缩成形磁体为切%,…  相似文献   

18.
本文采用Nd2Fe14B、Nd55FeBCo和Nd86FeCu53相粉末共烧结的方法制得NdFeB磁体。研究发现通过3相烧结工艺制得NdFeB磁体的晶界相比常规工艺制得NdFeB磁体的晶界相更均匀。由于晶界存在大量的Nd-Cu4、NdCo3和NdCo2相,晶界相的平均电位大大升高,超过了主相Nd2Fe14B的电位。因而NdFeB磁体发生电化学腐蚀时,电流密度大大降低,耐腐蚀性能得到了显著的改善。磁体腐蚀失重从一般工艺的60.47 mg.cm-2下降至1.2 mg.cm-2,而磁体的磁性能基本保持不变。  相似文献   

19.
采用双合金法将两种粉末混合制备烧结永磁体可提高磁体磁性能;但在烧结过程中两种粉末之间存在元素扩散,元素扩散对磁性能的影响程度需要进一步研究。本文将Nd13Fe81B6和TbHx粉末混合制备烧结磁体,Nd13Fe81B6磁体矫顽力为4.5 kOe。当TbHx混合量为3 wt.%,烧结磁体的矫顽力增加至20.0 kOe。通过热激活研究认为,磁畴壁的形核是反磁化需要经过的过程。由于热力学的原因Tb元素更容易扩散进入Nd2Fe14B主相而不是富集在晶间富稀土相。Tb元素进入主相替代Nd可形成具有更高各向异性场的(Nd,Tb)-Fe-B表层,在反磁化过程中晶粒表层磁畴壁的形核场会增加,因此矫顽力增加程度显著。但是,TbHx混合量超过5 wt.%,矫顽力增加幅度降低。对于TbHx混合量7 wt.%的磁体,元素分布显示在主相晶粒内部贫Tb区域明显增少,证实在烧结过程中更多Tb原子从晶粒表层扩散入晶粒内部,这样晶粒表层反磁化形核场的提高程度会减弱,因而磁体矫顽力增加幅度降低。本研究说明要提高双合金Nd-Fe-B磁体磁性能需进一步控制元素扩散并优化磁体的元素分布。  相似文献   

20.
22 稀有金属快报 2002年第5期 作为一种高性能的永久磁体,钕铁硼(Nd-Fe-B)合金磁体日益引起人们的很大关注,其应用领域也愈加广泛。它们的生产方法有熔体离心铸造和烧结工艺2种。人们认为,这类磁体的优越性来源于磁性的Nd2Fe14B相,它不仅具有很大的饱和磁化强度,而且具有很高的各向异性磁场。 在采用烧结技术途径时,Nd2Fe14B相在外加磁场内将锭坯破碎出来的粉末进行生坯压制之前就结晶取向排列了。生坯的烧结不破坏磁体中Nd2Fe14B相的取向特性,烧结出来的磁体是磁性各向异性的,其最大能量积超过了440kJ/m3。 在采用熔体离心铸…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号