首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: This study characterized the cellular uptake mechanism and hydrolysis of the amino acid ester prodrugs of nucleoside antiviral drugs in the transiently transfected Caco-2 cells overexpressing a human intestinal peptide transporter, hPEPT1 (Caco-2/hPEPT1 cells). METHODS: Amino acid ester prodrugs of acyclovir and AZT were synthesized and their apical membrane permeability and hydrolysis were evaluated in Caco-2/hPEPT1 cells. The cellular uptake mechanism of prodrugs was investigated through the competitive inhibition study in Caco-2/hPEPT1 cells. RESULTS: L-Valyl ester of acyclovir (L-Val-ACV) was approximately ten fold more permeable across the apical membrane than acyclovir and four times more permeable than D-valyl ester of acyclovir (D-Val-ACV). Correspondingly, L-valyl ester of AZT (L- Val-AZT) exhibited three fold higher cellular uptake than AZT. Therefore, amino acid ester prodrugs significantly increased the cellular uptake of the parent drugs and exhibited the D,L-stereoselectivity. Furthermore, prodrugs were rapidly hydrolyzed to the parent drugs by the intracellular hydrolysis, following the apical membrane transport. In the inhibition studies, cephalexin and small dipeptides strongly inhibited the cellular uptake of L-Val-ACV while L-valine had no effect, indicating that the peptide transporter is primarily responsible for the apical membrane transport of L-Val-ACV. In addition, the cellular uptake of L-Val-ACV was five times higher in Caco-2/hPEPT1 cells than the uptake in the untransfected Caco-2 cells, implying the cellular uptake of L-Val-ACV was related to the enhancement of the peptide transport activity in Caco-2/hPEPT1 cells. CONCLUSIONS: Caco-2/hPEPT1 system is an efficient in vitro model for the uptake study of peptidyl derivatives. Amino acid ester prodrugs significantly improved the cellular uptake of the parent drugs via peptide transport mechanism and were rapidly converted to the active parent drugs by the intracellular hydrolysis.  相似文献   

2.
Although recent evidence suggests that certain beta-lactam antibiotics are absorbed via a specific transport mechanism, its nature is unclear. To confirm whether peptide transport in the rat can be largely ascribed to the intestinal oligopeptide transporter PepT1, the transporter has been functionally characterized and its significance in the intestinal absorption of beta-lactam antibiotics was evaluated. For evaluation of transport activity complementary RNA (cRNA) of rat PepT1 was synthesized in-vitro and expressed in Xenopus laevis oocytes. cRNA induced uptake of several beta-lactam antibiotics and the dipeptide [14C]glycylsarcosine; this was specifically inhibited by various dipeptides and tripeptides but not by their constituent amino acids or by tetra- or pentapeptides. The transport activity of PepT1 for beta-lactam antibiotics correlated well with their in-vivo intestinal transport and absorption. Furthermore, mutual inhibitory effects on uptake were observed between glyclsarcosine and beta-lactam antibiotics. Hybrid depletion of the functional expression of rat PepT1 in oocytes injected with rat intestinal epithelial total mRNA was studied using an antisense oligonucleotide corresponding to the 5'-coding region of PepT1. In oocytes injected with rat mRNA pre-hybridized with the antisense oligonucleotide against rat PepT1, the uptake of [14C]glycylsarcosine was almost completely abolished, whereas its uptake was not influenced by a sense oligonucleotide for the same region of PepT1. Similarly, the uptake of beta-lactam antibiotics was also reduced by the antisense oligonucleotide against rat PepT1. These results demonstrate that the intestinal proton-coupled oligopeptide transporter PepT1 plays a predominant role in the carrier-mediated intestinal absorption of beta-lactam antibiotics and native oligopeptides in the rat.  相似文献   

3.
PURPOSE: General use of nucleoside analogues in the treatment of viral infections and cancer is often limited by poor oral absorption. Valacyclovir, a water soluble amino acid ester prodrug of acyclovir has been reported to increase the oral bioavailability of acyclovir but its absorption mechanism is unknown. This study characterized the intestinal absorption mechanism of 5' -amino acid ester prodrugs of the antiviral drugs and examined the potential of amino acid esters as an effective strategy for improving oral drug absorption. METHODS: Acyclovir (ACV) and Zidovudine (AZT) were selected as the different sugar-modified nucleoside antiviral agents and synthesized to L-valyl esters of ACV and AZT (L-Val-ACV and L-Val-AZT), D-valyl ester of ACV (D-Val-ACV) and glycly ester of ACV (Gly-ACV). The intestinal absorption mechanism of these 5' -amino acid ester prodrugs was characterized in three different experimental systems; in situ rat perfusion model, CHO/hPEPT1 cells and Caco-2 cells. RESULTS: Testing 5' -amino acid ester prodrugs of acyclovir and AZT, we found that the prodrugs increased the intestinal permeability of the parent nucleoside analogue 3- to 10-fold. The dose- dependent permeation enhancement was selective for L-amino acid esters. Competitive inhibition studies in rats and in CHO cells transfected with the human peptide transporter, hPEPT1, demonstrated that membrane transport of the prodrugs was mediated predominantly by the PEPT1 H+/dipeptide cotransporter even though these prodrugs did not possess a peptide bond. Finally, transport studies in Caco-2 cells confirmed that the 5' - amino acid ester prodrugs enhanced the transcellular transport of the parent drug. CONCLUSIONS: This study demonstrates that L-amino acid-nucleoside chimeras can serve as prodrugs to enhance intestinal absorption via the PEPT1 transporter, providing a novel strategy for improving oral therapy of nucleoside drugs.  相似文献   

4.
Nutrient transport across the mammalian small intestine is regulated by several factors, including intrinsic and extrinsic neural pathways, paracrine modulators, circulating hormones and luminal agents. Because beta-adrenoceptors seem to regulate gastrointestinal functions such as bicarbonate and acid secretion, intestinal motility and gastrointestinal mucosal blood flow, we have investigated the effects of different beta-adrenergic agonists on nutrient absorption by the rat jejunum in-vitro. When intestinal everted sacs were used the beta2-agonist salbutamol had no effect either on galactose uptake by the tissue or mucosal-to-serosal flux whereas mixed beta1- and beta2-agonists (isoproterenol and orciprenaline) and beta3-agonists (BRL 35135, Trecadrine, ICI 198157 and ZD 7114) inhibited galactose uptake and transfer of D-galactose from the mucosal-to-serosal media across the intestinal wall (although the inhibiting effects of isoproterenol and Trecadrine were not statistically significant). In intestinal everted rings both Trecadrine and BRL 35135 clearly reduced galactose uptake, the effect being a result of inhibition of the phlorizin-sensitive component. Total uptake of phenylalanine by the intestinal rings was also reduced by those beta3-adrenergic agonists. These results suggest that beta1- and beta3-adrenergic receptors could be involved in the regulation of intestinal active transport of sugars and amino acids.  相似文献   

5.
The systemic clearance of many quinolone antibiotics is mainly via metabolism and urinary excretion; by contrast, biliary excretion is a major route of elimination for a new quinolone grepafloxacin (GPFX). Accordingly, we studied the hepatic uptake of GPFX because it is the first step in the drug's hepatobiliary transport. The hepatic uptake of GPFX in vivo after i.v. administration was found to approach the hepatic blood flow, suggesting the existence of an effective hepatic uptake mechanism. To clarify this transport mechanism, GPFX uptake by isolated rat hepatocytes was examined and found to consist of a saturable component (Km 173 microM, Vmax 6.96 nmol/min/mg) and a nonspecific diffusion component. The inhibition of GPFX uptake by ATP-depletors and a lack of effect after replacing Na+ with choline demonstrated that the uptake was an Na+-independent carrier-mediated active process. This uptake was inhibited by other quinolones and for lomefloxacin this was competitive in nature. Mutual inhibition studies were undertaken to investigate whether the transporter for GPFX might be the same as other transporters so far identified. GPFX inhibited the uptake of taurocholic acid, pravastatin (organic anion), cimetidine (organic cation) and ouabain (neutral steroid). However, GPFX uptake was not inhibited by these compounds. Confirmation that GPFX uptake is blood flow limited was obtained by extrapolation of the in vitro data based on mathematical modeling. In conclusion, the effective hepatic uptake of quinolone antibiotics are via carrier-mediated active transport, which is distinct from that involved in the transport of bile acids, organic anions, organic cations or neutral steroids.  相似文献   

6.
1. We have studied L-valine transport by the caecal segments of 6- to 8-week-old chickens. Isolated enterocytes from the proximal caecum incubated with 0.1 mM L-valine can accumulate the substrate against a concentration gradient. After 50 min incubation, the intracellular L-valine concentration reached 0.53 mM, a value higher than that observed in enterocytes from the jejunum (0.34 mM; P< 0.01). 2. Enterocytes from the medial and distal caccal regions are unable to transport L-valine uphill (cell concentration: 0.1 mM). 3. Amino acid accumulation by proximal caecal cells was Na+ -dependent and was inhibited by ouabain and 2,4-dinitrophenol. L-methionine inhibits L-valine uptake and a 2.5 mM concentration abolishes the capacity of enterocytes to accumulate the substrate. 4. The high accumulation ratios shown by the proximal caecum for L-valine suggest a role for this intestinal segment in the absorption of neutral amino acids present in the caecal chamber.  相似文献   

7.
The transport of the nephrotoxic mycotoxin ochratoxin A across the renal peritubular membrane was examined in suspensions of rabbit renal proximal tubules. Ochratoxin A transport across the peritubular membrane was a high-affinity, low-capacity carrier-mediated process with a Jmax value of 0.12 +/- 0.4 nmol/mg of protein/min and a Km value of 1.4 +/- 0.1 microM. The apparent Michaelis constants for inhibition of [3H]para-aminohippurate (PAH) uptake by ochratoxin A inhibition was 1.5 microM, which is similar to the Km value for ochratoxin A uptake in tubule suspensions and suggests that ochratoxin A could be a substrate for the organic anion pathway. The capacity and affinity for peritubular ochratoxin A transport were 40-fold lower and > 100-fold greater, respectively, than those measured for the peritubular uptake of [3H]PAH in tubule suspensions. A concentration of 2.5 mM PAH, which reduced the uptake of [3H]PAH by 90%, reduced ochratoxin A uptake by only 40% to 50%, whereas probenecid concentrations of 0.6 to 2 mM reduced ochratoxin A accumulation in tubule suspensions up to approximately 80% to 90%. This probenecid-sensitive, PAH-insensitive uptake of ochratoxin A suggested that at least one mediated pathway other than the organic anion transporter was involved in the peritubular uptake of this mycotoxin. A 2 mM concentration of the fatty acid octanoate and 1.5 mM concentration of the nonsteroidal anti-inflammatory agent piroxicam were as effective as probenecid in blocking ochratoxin A uptake. The apparent Ki values for inhibition of ochratoxin A uptake by probenecid, piroxicam and octanoate were 30.5 +/- 7.9, 23.2 +/- 10.4 and 81.5 +/- 8.7 microM, respectively. The ability of octanoic acid to inhibit ochratoxin A transport to the same extent as probenecid and a greater extent than PAH suggests that a separate fatty acid transport pathway may be involved in the accumulation of ochratoxin A by suspensions of rabbit renal proximal tubules.  相似文献   

8.
Observations on the uptake of tyramine by hepatocytes indicate that the amine is taken up by simple diffusion and a transporter mediated system, with a Km of 39 microM and a Vmax of 270 pmol/min/10(5) cells. The carrier-mediated process is pH- and temperature-dependent and requires an activation energy of 12.9 kcal/mol. An overshoot uptake is achieved a few minutes after adding this amine to the cell suspension, suggesting that active transport is involved. This is supported by the finding that partial inhibition of the uptake can be induced by oligomycin, azide, cyanide and dinitrophenol. NO3-, SCN- and SO4(2-), which change the membrane potential significantly, and depress the transporter mediated uptake further, suggesting that the membrane potential is the driving force for the entry of this amine across hepatic membrane. Cysteine is essential for the normal carrier function; whereas, histidine, tryptophan, arginine and lysine do not directly deal with the activity of the carrier. Many substances, but not amino acids, H, M, and N receptor agonists, can inhibit the uptake of tyramine. It is possible that other amines can enter hepatocytes by using this transporter.  相似文献   

9.
10.
The effect of aging on the intestinal transport of hydrophilic drugs (and probe compounds) was investigated in the rat small intestine. Passive transport was suggested to be unchanged with aging from 8 (young) to 54 (old) and further to 101 (very old) weeks old, as shown for D-xylose and urea in single-pass intestinal perfusion (under urethane anesthesia), where steady-state transport across the intestinal membrane into the blood stream was evaluated. The passive transports of cephradine, 5-fluorouracil (5-FU) and L-glucose were also unchanged, though they were compared only between the young and the old. Consistently, the passive uptake in the intestinal everted sacs, where the entry process into the membrane was evaluated for 5-FU, D-xylose, urea and polyethylene glycol (PEG) 900, was unchanged with aging from the young to the very old. The carrier-mediated transport of cephradine was also unchanged with aging from the young to the old in perfusion under anesthesia, though that of D-glucose was declined by about 50% with aging from the young to the old and thereafter remained constant in the very old. In perfusion in unanesthetized rats, age independency in passive transport (examined for cephradine, L-glucose and D-xylose) and an age-dependent decline in D-glucose transport were also observed, suggesting that the findings under anesthesia are not qualitatively distorted. These results suggest that, although carrier-mediated transport may moderately decline with aging, the barrier function of the intestinal membrane to passive permeation of hydrophilic drugs (with molecular weight below 1000) may be unaffected by aging, supporting the suggestion from our previous in vivo studies that age-dependent increases in the orally absorbed fraction may be predicted for incompletely absorbed drugs because of delayed intestinal transit rather than increased intestinal transport (membrane permeability).  相似文献   

11.
Sodium- and chloride-coupled transport of dopamine from synapses into presynaptic terminals plays a key role in terminating dopaminergic neurotransmission. Regulation of the function of the dopamine transporter, the molecule responsible for this translocation, is thus of interest. The primary sequence of the dopamine transporter contains multiple potential phosphorylation sites, suggesting that the function of the transporter could be regulated by phosphorylation. Previous work from this laboratory has documented that phorbol ester activation of protein kinase C (PKC) decreases dopamine transport Vmax in transiently expressing COS cells. In the present report, we document in vivo phosphorylation of the rat dopamine transporter stably expressed in LLC-PK1, cells and show that phosphorylation is increased threefold by phorbol esters. Dopamine uptake is also regulated by phorbol esters in these cells; phorbol 12-myristate 13-acetate (PMA) reduces transport Vmax by 35%. Parallels between the time course, concentration dependency, and staurosporine sensitivity of alterations in transporter phosphorylation and transporter Vmax suggest that dopamine transporter phosphorylation involving PKC could contribute to this decreased transporter function. Phosphorylation of the dopamine transporter by PKC or by a PKC-activated kinase could be involved in rapid neuroadaptive processes in dopaminergic neurons.  相似文献   

12.
Intestinal epithelial cells express hPepT1, an apical transporter responsible for the uptake of a broad array of small peptides. As these could conceivably include n-formyl peptides, we examined whether hPepT1 could transport the model n-formylated peptide fMLP and, if so, whether such cellular uptake of fMLP influenced neutrophil-epithelial interactions. fMLP uptake into oocytes was enhanced by hPepT1 expression. In addition, fMLP competitively inhibited uptake of a known hPepT1 substrate (glycylsarcosine) in hPepT1 expressing oocytes. hPepT1 peptide uptake was further examined in a polarized human intestinal epithelial cell line (Caco2-BBE) known to express this transporter. Epithelial monolayers internalized apical fMLP in a fashion that was competitively inhibited by other hPepT1 recognized solutes, but not by related solutes that were not transported by hPepT1. Fluorescence analyses of intracellular pH revealed that fMLP uptake was accompanied by cytosolic acidification, consistent with the known function of hPepT1 as a peptide H+ cotransporter. Lumenal fMLP resulted in directed movement of neutrophils across epithelial monolayers. Solutes that inhibit hPepT1-mediated fMLP transport decreased neutrophil transmigration by approximately 50%. Conversely, conditions that enhanced the rate of hPepT1-mediated fMLP uptake (cytosolic acidification) enhanced neutrophil-transepithelial migration by approximately 70%. We conclude that hPepT1 transports fMLP and uptake of these peptide influences neutrophil-epithelial interactions. These data (a) emphasize the importance of hPepT1 in mediating intestinal inflammation, (b) raise the possibility that modulating hPepT1 activity could influence states of intestinal inflammation, and (c) provide the first evidence of a link between active transepithelial transport and neutrophil-epithelial interactions.  相似文献   

13.
The intestinal transport of the naturally occurring folate coenzyme, 5-methyltetrahydrofolate, was studied using everted sacs of rat jejunum. The study provides evidence that intestinal transport of 5-methyltetrahydrofolate is composed of two systems: 1) an active, carrier-mediated system which is demonstrable at low concentrations; and 2) a diffusion system which is demonstrable at high concentrations. The active system is characterized by: 1) saturation kinetics with Km congruent to 0.3 microM; 2) accumulation against a concentration gradient with a serosal-to-mucosal ratio of 1.8; 3) inhibition by metabolic poisons; 4) inhibition by oxidized and reduced folate analogs; 5) temperature dependence; 6) sodium dependence; 7) glucose dependence; and 8) specificity for the jejunum. These features are strongly pH-dependent, and demonstration of active transport of 5-methyltetrahydrofolate requires a buffer pH of 6, glucose in the incubation medium and a substrate concentration of less than 10(-6) M. The diffusion process is characterized by: 1) linear increase in the mucosal-to-serosal transport of 5-methyltetrahydrofolate with increasing mucosal concentration to 10(-6) M and above; 2) energy independence; 3) pH independence; and 4) temperature independence. These studies clarify the mechanism of intestinal transport of 5-methyltetrahydrofolate, show the similarities to transport of other folate compounds and provide a unified concept of intestinal folate transport.  相似文献   

14.
Poor intestinal absorption of peptides greatly limits their use as drugs for the treatment of chronic diseases. Since bile acids are efficiently absorbed by an active, Na(+)-dependent transport system in the ileum of mammals, model peptides of different chain length were attached to the 3-position of modified 3 beta-(omega-amino-alkoxy)-7 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid. These peptide-bile acid conjugates inhibited Na(+)-dependent [3H]taurocholate uptake into brush-border membrane vesicles isolated from rabbit ileum in a concentration-dependent manner. Furthermore, photoaffinity labeling of the bile acid-binding proteins of M(r) 93,000 and 14,000, identified as the protein components of the ileal Na(+)-dependent bile acid transport system in rabbit ileum (Kramer, W., Girbig, F., Gutjahr, U., Kowalewski, S., Jouvenal, K., Müller, G., Tripier, D., and Wess, G. (1993) J. Biol. Chem. 268, 18035-18046) by the photoreactive taurocholate analogue, (3,3-azo-7 alpha, 12 alpha-dihydroxy-5 beta [7 beta, -12 beta-3H]cholan-24-oyl)-2-aminoethanesulfonic acid, was inhibited by the peptide-bile acid conjugates. In contrast, the parent peptides and amino acids neither had a significant effect on [3H]taurocholate uptake by ileal brush-border membrane vesicles nor on photoaffinity labeling of the ileal bile acid-binding membrane proteins. The inhibitory effect of peptide-bile acid conjugates on [3H]taurocholate transport and photoaffinity labeling of the bile acid-binding proteins in rabbit ileal vesicles decreased with increasing chain length of the attached peptide radical. By in vivo ileum perfusion in anesthetized rats an intestinal absorption of the bile acid conjugate S3744 of the fluorescent oxaprolylpeptide 4-nitrobenzo-2-oxa-1,3-diazol-beta-Ala-Phe-5-Opr-Gly (S1037) and secretion of the intact compound into bile could be demonstrated, whereas the parent peptide S1037 or its t-butylester S4404 were not absorbed. The intestinal absorption of S3744 showed a similar temperature dependence as [3H]taurocholate absorption and was inhibited by the presence of taurocholate indicating a carrier-mediated uptake of S3744 via the ileal bile acid transporter. In conclusion, these results indicate that oligopeptides can be made enterally absorable by coupling to modified bile acid molecules making use of the specific intestinal absorption pathway for bile acids. This finding may be of great importance for the design and development of orally active peptide drugs.  相似文献   

15.
The concentration dependence and tissue distribution of high density lipoprotein (HDL) cholesteryl ester and apolipoprotein (apo) transport were determined in apoA-I knockout mice (apoA-I-/-) that lack normal HDL in plasma. Rates of HDL cholesteryl ester clearance were highly sensitive to plasma HDL cholesteryl ester concentrations with clearance rates falling by 80% in the liver and by 95% in the adrenal glands when plasma HDL cholesteryl ester concentrations were acutely raised to levels normally seen in control mice (approximately 50 mg/dl). With the exception of the brain, saturable HDL cholesteryl ester uptake was demonstrated in all tissues of the body, with the adrenal glands and liver manifesting the highest maximal transport rates (Jm). The plasma concentration of HDL cholesteryl ester necessary to achieve half-maximal transport (Km) equaled 4 mg/dl in the adrenal glands and liver; as a consequence, HDL cholesteryl ester uptake by these organs is maximal (saturated) at normal plasma HDL concentrations in the mouse. When expressed per whole organ, the liver was the most important site of HDL cholesteryl ester clearance accounting for approximately 72% of total HDL cholesteryl ester turnover at normal plasma HDL concentrations. HDL cholesteryl ester transporter activity and scavenger receptor type B1 (SR-BI) protein and mRNA levels were not up-regulated in any organ of apoA-I-/- mice even though these animals lack normal HDL.  相似文献   

16.
We evaluated the dose-dependent (saturable) gastrointestinal absorption of cefatrizine, an aminocephalosporin transported by peptide carriers, in rats by a physiological mechanism-based approach to clarify its absorption characteristics and to examine the in vitro (in situ)-in vivo correlation in intestinal transport. With an increase in oral dose (mumol/5 ml/kg) from 5 (low) to 50 (high), the intestinal absorption rate constant (ka), which was estimated by analysis of gastrointestinal disposition, decreased markedly, from 0.301 to 0.056 min-1. This decrease was ascribable to the saturability of intestinal membrane transport, of which the concentration dependency in the perfused intestine was similar in extent to the dose dependency in ka. However, the apparent absorption rate constant (ka'), which was estimated by analysis of plasma concentrations after oral administration, decreased only modestly from 0.037 to 0.023 min-1. This was associated with the result that, at the low dose, ka' was far smaller than ka and comparable with k(g) (gastric emptying rate constant), suggesting gastric emptying-limited absorption. At the high dose, where intestinal cefatrizine absorption was less efficient, ka' was closer to ka than k(g). It was also observed that the bioavailability was close to unity, independent of dose, suggesting that the intestinal transit time is long enough to achieve complete absorption, even at the high dose, where intestinal cefatrizine absorption is less efficient. Thus, it was found that the effect of saturability in the intestinal transport of cefatrizine is apparently attenuated in its overall gastrointestinal absorption because of the involvement of gastric emptying and intestinal transit time as additional physiological factors to define absorption. It was also found that a scaling factor is required to correlate the intestinal membrane transport between in vitro (in situ) and in vivo, though this remains to be verified to be utilized for developing oral drug delivery strategies and optimizing oral drug therapy.  相似文献   

17.
OBJECTIVE: The effect of total parenteral nutrition (TPN) on small intestinal amino acid transport activity was studied in humans. SUMMARY BACKGROUND DATA: Studies in humans receiving TPN indicate that a decrease in the activities of the dissacharidase enzymes occurs, but morphologic changes are minimal with only a slight decrease in villous height. METHODS: Surgical patients were randomized to receive TPN (n = 6) or a regular oral diet (controls, n = 7) for 1 week before abdominal surgery. Ileum (5 controls, 5 TPN) or jejunum (2 controls, 1 TPN) were obtained intraoperatively and brush-border membrane vesicles (BBMV) were prepared by magnesium aggregation/differential centrifugation. Transport of L-MeAlB (a selective system A substrate), L-glutamine, L-alanine, L-arginine, L-leucine, and D-glucose was assayed by a rapid mixing/filtration technique in the presence and absence of sodium. RESULTS: Vesicles demonstrated approximately 18-fold enrichments of enzyme markers, classic overshoots, transport into an osmotically active space, and similar 1-hour equilibrium values. TPN resulted in a 26-44% decrease in the carrier-mediated transport velocity of all substrates except glutamine across ileal BBMVs. In the one patient receiving TPN from whom jejunum was obtained, there was also a generalized decrease in nutrient transport, although glutamine was least affected. Kinetic studies of the system A transporter demonstrated that the decrease in uptake was secondary to a reduction in carrier Vmax, consistent with a decrease in the number of functional carriers in the brush-border membrane. CONCLUSIONS: TPN results in a decrease in brush-border amino acid and glucose transport activity. The observation that glutamine transport is not downregulated by 1 week of bowel rest may further emphasize the important metabolic role that glutamine plays as a gut fuel and in the body's response to catabolic stresses.  相似文献   

18.
In order to determine whether the vitamin nicotinic acid is absorbed via an anion antiporter, intestinal epithelial cell membrane transport mechanisms for nicotinic acid were characterized using isolated rabbit jejunal brush-border membrane vesicles. The uptake of nicotinic acid by the membrane vesicles showed an overshoot phenomenon in the presence of an outwardly directed bicarbonate gradient or an inwardly directed proton gradient and the uptakes were two times and six times greater, respectively, than that in the absence of any ion gradient. The bicarbonate-dependent initial uptake of nicotinic acid was increased at acidic pH, showing pH-dependent transport activity. An inhibitor of anion transport, 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid, specifically reduced bicarbonate-dependent transport of nicotinic acid. The initial uptakes of nicotinic acid via the anion antiporter and the proton cotransporter were specifically inhibited by monocarboxylic acids such as acetic acid, benzoic acid, D- and L-lactic acid, pravastatin and valproic acid, but not by di- or tricarboxylic acids, bile acids or amino acids. Nicotinic acid uptake activity was, furthermore, expressed in a Xenopus laevis oocyte system after injection of messenger RNA (mRNA) derived from rabbit intestinal epithelial cells. These observations demonstrate that nicotinic acid is absorbed by two independent active transport mechanisms from small intestine, i.e. a proton cotransporter and an anion antiporter. The pH-dependence observed in the intestinal absorption of nicotinic acid might, therefore, be ascribed partly to pH-sensitive and partly to carrier-mediated transport mechanisms in the brush-border membrane.  相似文献   

19.
Previous studies have shown that rat adipocytes possess the capacity to take up fructose by a mechanism that is distinct from that involved in the transport of glucose. In this investigation we report that rat adipocytes express the GLUT5 fructose transporter and that it is responsible for mediating a substantial component (approximately 80%) of the total cellular fructose uptake. This proposition is based on the finding that only 21% of the total fructose uptake was cytochalasin B (CB) sensitive which most likely reflects transport via GLUT1 and/or GLUT4. Consistent with this suggestion we found (i) that insulin caused a small, but significant stimulation in fructose uptake (approximately 35%) which was abolished in the presence of CB and (ii) that 3-O-methyl glucose inhibited fructose uptake to a level comparable with that observed in the presence of CB. GLUT5 was found to be localised only in the adipocyte plasma membrane and, unlike GLUT4 or GLUT1, its cell surface abundance was not modulated by insulin. GLUT5 expression fell substantially (by approximately 75%) in adipocytes of streptozotocin-diabetic rats and was accompanied by a reduction in fructose uptake by approximately 50%. Treatment of streptozotocin-diabetic rats with sodium orthovanadate for a period of 3 days led to a significant reduction in blood glycaemia by approximately 40% and a partial restoration in both GLUT5 expression and adipocyte fructose uptake. We suggest that fructose uptake in rat adipocytes is principally mediated by GLUT5 in an insulin- and CB-insensitive manner and that expression of GLUT5 in rat adipocytes may be regulated by changes in blood glycaemia.  相似文献   

20.
The xylP gene of Lactobacillus pentosus, the first gene of the xylPQR operon, was recently found to be involved in isoprimeverose metabolism. By expression of xylP on a multicopy plasmid in Lactobacillus plantarum 80, a strain which lacks active isoprimeverose and D-xylose transport activities, it was shown that xylP encodes a transporter. Functional expression of the XylP transporter was shown by uptake of isoprimeverose in L. plantarum 80 cells, and this transport was driven by the proton motive force generated by malolactic fermentation. XylP was unable to catalyze transport of D-xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号