首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterizing combinations of coding polymorphisms (cSNPs), alternative splicing and post-translational modifications (PTMs) on a single protein by standard peptide-based proteomics is challenging owing to <100% sequence coverage and the uncoupling effect of proteolysis on such variations >10-20 residues apart. Because top down MS measures the whole protein, combinations of all the variations affecting primary sequence can be detected as they occur in combination. The protein form generated by all types of variation is here termed the "proteotype", akin to a haplotype at the DNA level. Analysis of proteins from human primary leukocytes harvested from leukoreduction filters using a dual on-line/off-line top down MS strategy produced >600 unique intact masses, 133 of which were identified from 67 unique genes. Utilizing a two-dimensional platform, termed multidimensional protein characterization by automated top down (MudCAT), 108 of the above protein forms were subsequently identified in the absence of MS/MS in 4 days. Additionally, MudCAT enables the quantitation of allele ratios for heterozygotes and PTM occupancies for phosphorylated species. The diversity of the human proteome is embodied in the fact that 32 of the identified proteins harbored cSNPs, PTMs, or were detected as proteolysis products. Among the information were three partially phosphorylated proteins and three proteins heterozygous at known cSNP loci, with evidence for non-1:1 expression ratios obtained for different alleles.  相似文献   

2.
For improved detection of diverse posttranslational modifications (PTMs), direct fragmentation of protein ions by top down mass spectrometry holds promise but has yet to be achieved on a large scale. Using lysate from Saccharomyces cerevisiae, 117 gene products were identified with 100% sequence coverage revealing 26 acetylations, 1 N-terminal dimethylation, 1 phosphorylation, 18 duplicate genes, and 44 proteolytic fragments. The platform for this study combined continuous-elution gel electrophoresis, reversed-phase liquid chromatography, automated nanospray coupled with a quadrupole-FT hybrid mass spectrometer, and a new search engine for querying a custom database. The proteins identified required no manual validation, ranged from 5 to 39 kDa, had codon biases from 0.93 to 0.083, and were primarily associated with glycolysis and protein synthesis. Illustrations of gene-specific identifications, PTM detection and subsequent PTM localization (using either electron capture dissociation or known PTM data stored in a database) show how larger scale proteome projects incorporating top down may proceed in the future using commercial Q-FT instruments.  相似文献   

3.
For the backbone dissociation of large (29 kDa) multiply charged protein ions in the gas phase by electron capture, the main experimental challenges are juxtaposition of the electron and ion for efficient capture, dissociation of tertiary noncovalent bonds that prevent product separation, and minimization of secondary electron capture that destroys larger product ions. A simple alternative methodology is described in which electrons (0.03-100 microA, 0.1-15 eV) are first impinged on a gas pulse in the ion cell of a Fourier transform mass spectrometer, followed by ion beam introduction. For carbonic anhydrase, the resulting plasma conditions produce 87% efficiency for electron capture; a single spectrum yields 512 product ions of 237 different masses from cleavage of 183 of the 258 interresidue bonds, while two spectra cleave 197 of these bonds. The problem of secondary dissociation of product ions is reduced by plasma conditions in which product ions are formed near electrons whose velocities are unfavorable and whose capture cross sections no longer have a square dependence on charge. One plasma ECD spectrum of ubiquitin provides its sequence de novo except for two residue pairs. ECD of casein identifies 126 of 208 interresidue cleavages, providing direct and specific characterization of all its 26 Ser/Thr/Tyr phosphorylation sites.  相似文献   

4.
The extension of quantitation methods for small peptides to ions above 5 kDa, and eventually to global quantitative proteomics of intact proteins, will require extensive refinement of current analytical approaches. Here we evaluate postgrowth Cys-labeling and 14N/15N metabolic labeling strategies for determination of relative protein expression levels and their posttranslational modifications using top-down mass spectrometry (MS). We show that intact proteins that are differentially alkylated with acrylamide (+71 Da) versus iodoacetamide (+57 Da) have substantial chromatographic shifts during reversed-phase liquid chromatography separation (particularly in peak tails), indicating a requirement for stable isotopes in alkylation tags for top-down MS. In the 14N/15N metabolic labeling strategy, we achieve 98% 15N incorporation in yeast grown 10 generations under aerobic conditions and determine 50 expression ratios using Fourier transform ion cyclotron resonance MS in comparing these cells to anaerobically grown control (14N) cells. We devise quantitative methods for top-down analyses, including a correction factor for accurate protein ratio determination based upon the signal-to-noise ratio. Using a database of 200 yeast protein forms identified previously by top-down MS, we verify the intact mass tag concept for protein identification without tandem MS. Overall, we find that top-down MS promises work flows capable of large-scale proteome profiling using stable isotope labeling and the determination of >5 protein ratios per spectrum.  相似文献   

5.
MALDI-TOF mass spectrometry has been coupled with Internet-based proteome database search algorithms in an approach for direct microorganism identification. This approach is applied here to characterize intact H. pylori (strain 26695) Gram-negative bacteria, the most ubiquitous human pathogen. A procedure for including a specific and common posttranslational modification, N-terminal Met cleavage, in the search algorithm is described. Accounting for posttranslational modifications in putative protein biomarkers improves the identification reliability by at least an order of magnitude. The influence of other factors, such as number of detected biomarker peaks, proteome size, spectral calibration, and mass accuracy, on the microorganism identification success rate is illustrated as well.  相似文献   

6.
A method for rapid identification of microorganisms is presented, which exploits the wealth of information contained in prokaryotic genome and protein sequence databases. The method is based on determining the masses of a set of ions by MALDI TOF mass spectrometry of intact or treated cells. Subsequent correlation of each ion in the set to a protein, along with the organismic source of the protein, is performed by searching an Internet-accessible protein database. Convoluting the lists for all ions and ranking the organisms corresponding to matched ions results in the identification of the microorganism. The method has been successfully demonstrated on B. subtilis and E. coli, two organisms with completely sequenced genomes. The method has been also tested for identification from mass spectra of mixtures of microorganisms, from spectra of an organism at different growth stages, and from spectra originating at other laboratories. Experimental factors such as MALDI matrix preparation, spectral reproducibility, contaminants, mass range, and measurement accuracy on the database search procedure are addressed too. The proposed method has several advantages over other MS methods for microorganism identification.  相似文献   

7.
Mass spectra produced by nozzle-skimmer dissociation (NSD) have been little used in the past for structural characterization. NSD cannot be used on mass-separated ions (MS/MS), and for electrosprayed protein ions, previous NSD spectra showed backbone cleavages similar to those from energetic methods such as collisionally activated dissociation (CAD) or infrared multiphoton dissociation (IRMPD). However, our experimental configuration with Fourier transform (FT) MS makes possible three consecutive steps of NSD ion activation: thermal in the entrance capillary and collisional in both the nozzle-skimmer (N-S) region and the region after the skimmer before the quadrupole entrance lens (S-Q). In the high-pressure N-S region of adjustable path length, ions undergo high-frequency, low-energy collisions to rupture weak noncovalent or covalent bonds, with these "denatured" products then subjected to high-energy collisions in the low-pressure S-Q region to cleave strong backbone bonds. These NSD spectra, plus those from variable capillary thermal activation, of 8+ to 11+ ubiquitin ions electrosprayed from denatured solution show backbone cleavages between 74 of 75 amino acid pairs, vs 66 for CAD and 50 for IRMPD in the FTMS cell. Thermal activation by the inlet capillary of the newly desolvated 6+, 7+ ubiquitin ions from electrospraying the native conformer increases the NSD yield from 8% at 56 degrees C to 96% at 76 degrees C, but with little change in product branching ratios; this capillary heating has no effect on CAD or IRMPD of these ions collected in the FTMS cell. Ion desolvation with its concomitant H-bond strengthening appears to produce a transiently stable conformer whose formation can be prevented by capillary heating. The far more complex and stable noncovalent tertiary structures of large protein ions in the gas phase have made MS/MS difficult; initial inhibition of tertiary structure formation with immediate NSD ("prefolding dissociation") appears promising for the top down characterization of a 200-kDa protein.  相似文献   

8.
For analysis of intact proteins by mass spectrometry (MS), a new twist to a two-dimensional approach to proteome fractionation employs an acid-labile detergent instead of sodium dodecyl sulfate during continuous-elution gel electrophoresis. Use of this acid-labile surfactant (ALS) facilitates subsequent reversed-phase liquid chromatography (RPLC) for a net two-dimensional fractionation illustrated by transforming thousands of intact proteins from Saccharomyces cerevisiae to mixtures of 5-20 components (all within approximately 5 kDa of one another) for presentation via electrospray ionization (ESI) to a Fourier transform MS (FTMS). Between 3 and 13 proteins have been detected directly using ESI-FTMS (or MALDI-TOF), and the fractionation showed a peak capacity of approximately 400 between 0 and 70 kDa. A probability-based identification was made automatically from raw MS/MS data (obtained using a quadrupole-FTMS hybrid instrument) for one protein that differed from that predicted in a yeast database of approximately 19,000 protein forms. This ALS-PAGE/RPLC approach to proteome processing ameliorates the "front end" problem that accompanies direct analysis of whole proteins and assists the future realization of protein identification with 100% sequence coverage in a high-throughput format.  相似文献   

9.
Nitration of protein tyrosine residues is very often regarded as a molecular signal of peroxynitrite formation during development, oxidative stress, and aging. However, protein nitration might also have biological functions comparable to protein phosphorylation, mainly in redox signaling and in signal transduction. The major challenge in the proteomic analysis of nitroproteins is the need to discriminate modified proteins, usually occurring at substoichiometric levels from the large amount of nonmodified proteins. Moreover, precise localization of the nitration site is often required to fully describe the biological process. Existing methodologies essentially rely on immunochemical techniques either using 2D-PAGE fractionation in combination with western blot analyses or exploiting immunoaffinity procedures to selectively capture nitrated proteins. Here we report a totally new approach involving dansyl chloride labeling of the nitration sites that rely on the enormous potential of MSn analysis. The tryptic digest from the entire protein mixture is directly analyzed by MS on a linear ion trap mass spectrometer. Discrimination between nitro- and unmodified peptide is based on two selectivity criteria obtained by combining a precursor ion scan and an MS3 analysis. This new procedure was successfully applied to the identification of 3-nitrotyrosine residues in complex protein mixtures.  相似文献   

10.
We derive and validate a simple statistical model that predicts the distribution of false matches between peaks in matrix-assisted laser desorption/ionization mass spectrometry data and proteins in proteome databases. The model allows us to calculate the significance of previously reported microorganism identification results. In particular, for deltam = +/-1.5 Da, we find that the computed significance levels are sufficient to demonstrate the ability to identify microorganisms, provided the number of candidate microorganisms is limited to roughly three Escherichia coli-like or roughly 10 Bacillus subtilis-like microorganisms (in the sense of having roughly the same number of proteins per unit-mass interval). We conclude that, given the cluttered and incomplete nature of the data, it is likely that neither simple ranking nor simple hypothesis testing will be sufficient for truly robust microorganism identification over a large number of candidate microorganisms.  相似文献   

11.
12.
The characterization of protein glycosylation can be a complex and time-consuming procedure, especially for prokaryote O-linked glycoproteins, which often comprise unusual oligosaccharide structures with no known glycosylation motif. In this report, we describe a "top-down" approach that provides information on the extent of glycosylation, the molecular masses, and the structure of oligosaccharide residues on bacterial flagella, important structural proteins involved in the motility of pathogenic bacteria. Flagella from four bacterial pathogens, namely, Campylobacter jejuni, Helicobacter pylori, Aeromonas caviae, and Listeria monocytogenes, were analyzed by this top-down mass spectrometry approach. The approach needs minimal sample preparation and can be performed within a few minutes compared to the tedious and often time-consuming "bottom-up" approach involving proteolytic digestion and LC-MS-MS analyses of the suspected glycopeptides. Multiply protonated protein precursor ions subjected to low-energy collisional activation in a quadrupole time-of-flight instrument showed extensive and specific gas-phase deglycosylation resulting in the formation of abundant oxonium ions with very few fragment ions from peptidic bond cleavages. Structural information on individual carbohydrate residues is obtained using a second-generation product ion scan of oxonium ions formed by collisional activation of the intact protein ions in the source region. The four bacterial flagella examined differed not only by the extent of glycosylation but also by the nature of carbohydrate substituents. For example, the flagellin from the Gram-positive bacterium, L. monocytogenes showed O-linked GlcNAc residues at up to 6 sites/protein monomer. In contrast, the three Gram-negative bacterial pathogens C. jejuni, H. pylori and A. caviae displayed up to 19 Ser/Thr O-linked sites modified with residues structurally related to N-acetylpseudaminic acid (Pse5Ac7Ac) and in the case of Campylobacter include a novel N-acetylglutamine substituent on Pse5Am7Ac.  相似文献   

13.
It has been shown that oxidatively modified forms of proteins accumulate during oxidative stress, aging, and in some age-related diseases. One of the unique features of a wide variety of routes by which proteins are oxidized is the generation of carbonyl groups. This paper reports a method for the isolation of oxidized proteins, which involves (1) biotinylation of oxidized proteins with biotin hydrazide and (2) affinity enrichment using monomeric avidin affinity chromatography columns. The selectivity of the method was validated by adding in vitro oxidized biotinylated BSA to a yeast lysate and showing that the predominant protein recovered was BSA. This method was applied to the question of whether large doses of 2-nitropropane produce oxidized proteins. A study of rat liver homogenates showed that animals dosed with 2-nitropropane produced 17 times more oxidized protein than controls in 6 h. Tryptic digestion of these oxidized proteins followed by reversed-phase chromatography and tandem mass spectrometry led to the identification of 14 peptides and their parent proteins. Nine of the 14 identified peptides were found to carry 1 or 2 oxidation sites and 5 of the 9 peptides were biotinylated. The significance of this affinity method is that it allows the isolation of oxidized proteins from the rest of the proteome and facilitates their identification. In some cases, it is even possible to identify the site of oxidation.  相似文献   

14.
Capabilities of mass spectrometry for the analysis of intact proteins can be increased through separation methods. Flow field-flow fractionation (FlFFF) is characterized by the particularly "soft" separation mechanism, which is ideally suited to maintain the native structure of intact proteins. This work describes the original on-line coupling between hollow-fiber FlFFF (HF FlFFF), the microcolumn variant of FlFFF, and electrospray ionization/time-of-flight mass spectrometry (ESI/TOFMS) for the analysis and characterization of intact proteins. The results show that the native (or pseudonative) structure of horse heart myoglobin and horseradish peroxidase is maintained. Sample desalting is also observed for horse heart myoglobin. Correlation between the molar mass values independently measured by HF FlFFF retention and ESI/TOFMS allows us to confirm the protein aggregation features of bovine serum albumin and to indicate possible changes in the quaternary structure of human hemoglobin.  相似文献   

15.
Intact protein biomarkers from Bacillus cereus T spores have been analyzed by high-resolution tandem Fourier transform ion cyclotron resonance mass spectrometry. Two techniques have been applied for excitation of the isolated multiply charged precursor ion species: sustained off-resonance irradiation/collisionally activated dissociation and electron capture dissociation. Fragmentation-derived sequence tags and BLAST sequence similarity proteome database searches allow unequivocal identification of the major biomarker protein with unprecedented specificity. Sequence-specific fragmentation patterns further confirm protein identification. Moreover, methodology combining accurate mass measurements of intact proteins with additional information contained in a proteome database permits tentative assignment of several other protein biomarkers isolated from the B. cereus T spores. We argue that approaches involving tandem MS of protein biomarkers, combined with bioinformatics, can drastically improve the specificity of individual microorganism identification, particularly in complex environments.  相似文献   

16.
A method for obtaining protein molecular masses with an accuracy of approximately +/- 0.01% by matrix-assisted laser desorption using an internal calibrant is described. The technique allows accurate mass determinations of protein sample sizes as small as 1 pmol. High concentrations of organic and inorganic contaminants (e.g. 1 M urea) do not strongly affect either the signal intensity or the mass assignment. The ability to assign an accurate molecular mass to a protein is contingent on the observation of clearly resolved protonated molecule ions in the mass spectrum.  相似文献   

17.
TwinPeaks, a close variant of the SEQUEST protein identification algorithm, is capable of unrestricted, large-scale, identification of post-translation modifications (PTMs). TwinPeaks is applied on a sample of 100441 tandem mass spectra from the HUPO Plasma Proteome Project data set, with full non-redundant human as a reference protein database. With a 3.5% error rate, TwinPeaks identifies a collection of 539 spectra that were not identified by the usual PTM-restricted identification algorithm. At this error rate, TwinPeaks increases the rate of spectra identifications by at least 17.6%, making unrestricted PTM identification an integral part of proteomics.  相似文献   

18.
A method for speciation and identification of organoselenium metabolites found in human urine samples using high performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) and tandem mass spectrometry (MS/MS) is described. Reversed-phase chromatographic separation was used for sample fractionation with the ICP-MS functioning as an element-selective detector, and six distinct selenium-containing species were detected in a human urine sample. Fractions were then collected and analyzed using a triple quadrupole mass spectrometer with electrospray ionization and collision-induced dissociation to obtain structural information. The first two fractions were identified specifically as selenomethionine and selenocystamine, estimated to be present at approximately 11 and 40 ppb, respectively. To the best of our knowledge, this is the first time these two metabolites have been positively identified in human urine.  相似文献   

19.
The coupling of microfabricated devices to nanoelectrospray mass spectrometers using both a triple quadrupole and a quadrupole time-of-flight mass spectrometer (QqTOF MS) is presented for the analysis of trace-level membrane proteins. Short disposable nanoelectrospray emitters were directly coupled to the chip device via a low dead volume connection. The analytical performance of this integrated device in terms of sensitivity and reproducibility was evaluated for standard peptide mixtures. A concentration detection limit ranging from 3.2 to 43.5 nM for different peptides was achieved in selected ion monitoring, thus representing a 10-fold improvement in sensitivity compared to that of microelectrospray using the same chip/mass spectrometer. Replicate injections indicated that reproducibility of migration time was typically less than 3.1% RSD whereas RSD values of 6-13% were observed on peak areas. Although complete resolution of individual components is not typically achieved for complex digests, the present chip capillary electrophoresis (chip-CE) device enabled proper sample cleanup and partial separation of multicomponent samples prior to mass spectral identification. Analyses of protein digests were typically achieved in less than 1.5 min with peak widths of 1.8-2.5 s (half-height definition) as indicated from individual reconstructed ion electropherograms. The application of this chip-CE/QqTOF MS system is further demonstrated for the identification of membrane proteins which form a subset of the Haemophilus influenzae proteome. Bands first separated by 1D-gel electrophoresis were excised and digested, and extracted tryptic peptides were loaded on the chip without any further sample cleanup or on-line adsorption preconcentration. Accurate molecular mass determination (< 5 ppm) in peptide-mapping experiments was obtained by introducing an internal standard via a postseparation channel. The analytical potential of this integrated device for the identification of trace-level proteins from different strains of H. influenzae is demonstrated using both peptide mass-fingerprint database searching and on-line tandem mass spectrometry.  相似文献   

20.
Glycoproteins carrying O-linked N-acetylglucosamine (O-GlcNAc) modifications have been isolated from a wide range of organisms ranging from trypanosomes to humans. Interest in this modification is increasing as evidence accumulates that it is an abundant and transient modification that is dynamic and responsive to cellular stimuli. Concurrent advances in biological mass spectrometry (MS) have facilitated high-sensitivity protein identification by tandem MS. In this study, we show that the lability of the O-GlcNAc moiety to low-energy collision in tandem MS offers a means of distinguishing such peptides from others that are not modified. The differential between the energy required to remove the O-GlcNAc group and the energy required to fragment the peptide chain allows the O-GlcNAc group to be detected and the peptide sequence, and therefore the protein, to be identified. This technique thus allows the simultaneous detection and identification of O-GlcNAc-modified peptides, even when present at low levels in complex mixtures. The method was initially developed and validated using a synthetic O-GlcNAc-modified peptide and then applied to the detection of an extremely low abundance O-GlcNAc-modified peptide from bovine alpha-crystallin. We believe that with further development this assay system may prove to be a useful tool for the direct investigation of intracellular O-GlcNAc levels, thus providing valuable insights into the physiological role of O-GlcNAc modified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号