首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.  相似文献   

2.
建立了260t转炉吹炼过程中的可压缩、非等温三维VOF 模型。研究了多孔超音速射流与转炉熔池作用过程特征,阐明了射流与熔融钢水界面接触的轮廓变化。揭示了钢液喷溅机制,定量分析了冲击坑形态大小。结果表明,吹炼过程具有瞬时性,随着吹炼进行,气液界面逐渐失稳并发生喷溅,喷溅会以大块金属带和液滴两种形式共存。在2.2 m枪位53000 m3/h的工况下,进行吹炼时形成的底部死区面积约为熔池底部面积的12%~15%,冲击坑直径占比熔池直径的55%左右,冲击坑深度占比熔池深度的30%左右。工业生产实践表明,过程枪位2.2 m,吹气量53000 m3/h,吹氧15.2 min,氧耗47.7 m3/t,脱磷率83.1%,钢铁料消耗降至1115 kg/t。  相似文献   

3.
 A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0.10 m2, 0.0125 m/s, 3.58 cm to 0.72 m2, 0.1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.  相似文献   

4.
用流体商业软件Fluent对50 t转炉氧枪喷头的冷却水流动进行数值模拟,从冷却水流动的速度矢量图分析其流动特征。通过模拟分析,提出一种兼顾控制冷却水流动、提高冷却效率和喷头端面强度的带有水冷隔板的新结构氧枪喷头。模拟结果表明,由于新结构氧枪喷头内形成独立的进回水通道,可减少水流在水冷腔中对冲造成的能量损失和喷头中心水流死区的产生,有良好的冷却效果,增强了端部中心机械强度,抑制喷头变形。  相似文献   

5.
 为研究有低密度伴随的聚合射流氧枪射流流场,利用氧枪射流检测系统,对常温下(冷态)以空气模拟的射流进行了物理模拟。结合数值模拟结果,分析了传统无伴随流射流以及带有副孔氦气低密度伴随情况下射流流场的流动状态,讨论了在不同的滞止压力和环境温度时有、无伴随射流流场特性。结果表明,修正的k ε双方程模型能较好地预测实验结果,伴随流的存在减缓了中心射流的沿程衰减,环境温度的变化影响射流在径向和轴向的流动状态。  相似文献   

6.
Dust generation behavior during BOF operation with minimal slag was investigated by measuring the dust concentration of the dust collecting water, and a dust generation model was proposed. In this model, the dust generation rate was expressed as a function of the carbon content in metal and the dynamic pressure at a metal surface of the oxygen top blown jet. As a result of controlling the dynamic pressure with the model, the dust generation rate during BOF operation was restrained and the oxygen blowing rate was increased by 10% to raise the productivity while maintaining the same rate of dust generation. To obtain data on the dust generation rate and clarify the behavior of the top blown jet, a new online system for measuring the dust generation rate for BOF was developed. The system enabled online continuous measurement of the dust generation rate by diluting the dust collecting water and using a colorimetric method to measure the dust concentration of the diluted dust collecting water. Application of the numerical simulation method to supersonic jets was considered and the behavior of the top blown jet was grasped in order to control the dynamic pressure. These tools were used to optimize the operating conditions and quickly evaluate the top blowing lance design under the Zero‐Slag‐Process.  相似文献   

7.
Utilizing CO2 for the slag splashing process presents a novel approach that enhances CO2 utilization in the steel industry and promotes efficient slag splashing. Herein, numerical simulation is employed to investigate the kinetic feasibility of this technique on a 100 t converter. The volume of fluid (VOF) model is utilized to trace the gas–slag interface, while the standard kε model is selected to describe the turbulent flow of each phase. Initially, the model is validated via isentropic theory and experimental data. Subsequently, the effects of gas and oxygen lance replacement are evaluated. The results indicate that employing CO2 solely instead of N2 leads to a reduction in jet velocity and slag mass flow rates at different positions. However, the utilization of the innovative oxygen lance slows down the jet decay and increases the slag mass flow rate at various heights and sidewalls, except for the lower cone, resulting in a satisfactory slag splashing performance. The present study verifies the feasibility of this new technology and its potential to contribute to CO2 reduction in the industry positively.  相似文献   

8.
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag–bulk metal zone, (iii) slag–metal–gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag–metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.  相似文献   

9.
通过1:6水模型试验分析了顶枪吹气辅助扒渣过程中的驱渣动力学机制,试验研究了喷吹气体流量(10~30 L/min),喷枪插入深度(90~270 mm)和位置(距边缘0~160mm)对扒渣效果的影响。结果表明,随着喷吹气体流量、顶吹喷枪插入深度的增大和喷枪插入位置至铁水罐后壁距离减少,驱渣效果显著改善,有利于铁水渣的扒除。工业应用试验结果表明,采用顶吹辅助扒渣工艺后,扒渣时间明显缩短,但铁损没有显著降低,须进一步优化工艺参数。  相似文献   

10.
路文刚  吕明  潘宏涛  朱荣  王慧知  刘煜 《钢铁》2014,49(5):36-41
 脱磷专用转炉通常采用脱磷氧枪促进化渣,提高脱磷率,实现铁水预脱磷。设计了马赫数为1.9、氧枪流量为14500m3/h的4孔脱磷氧枪,利用Fluent软件模拟了脱磷氧枪的速度场、温度场和密度场等分布。模拟发现:4孔脱磷氧枪在枪位为1.5m时,射流速度约为115m/s,当射流速度为100m/s时,最大射流半径为0.28m。在此基础上,将脱磷氧枪用于120t脱磷专用转炉的生产过程,取得了良好的冶炼效果:可控制脱磷终点温度为1370℃左右;转炉终点碳的质量分数大于2.8%时能满足脱碳炉热量要求;半钢磷的质量分数平均可达到0.018%,平均脱磷率可达到79.2%。与传统单渣工艺相比,采用此工艺不仅能降低炼钢终点磷含量,也能保证脱磷的稳定性。  相似文献   

11.
In the earlier study, a dynamic model for the BOF process based on the multizone reaction kinetics has been developed. In the preceding part, the mechanism of manganese transfer in three reactive zones of the converter has been analyzed. The study predicts that temperature at the slag–metal reaction interface plays a major role in the Mn reaction kinetics. Further, mathematical treatments to simulate the transient rate parameters associated with each reaction interface have been developed. The model calculations of Mn removal rate obtained from different zones of the converter predicts that the first stage of the blow is dominated by the oxidation of Mn at the jet impact zone, albeit some additional Mn refining has been observed as a result of the oxidation of metal droplets in emulsion phase. The simulation result shows that the reversion of Mn from slag to metal primarily takes place at the metal droplet in the emulsion due to an increase in slag–metal interface temperature during the middle stage of blowing. In the final stage of the blow, the competition between simultaneous reactions in jet impact and emulsion zone controls the direction of mass flow of manganese. Further, the model prediction shows that the Mn refining in the emulsion is a strong function of droplet diameter and the residence time. Smaller sized droplets approach equilibrium quickly and thus contribute to a significant Mn conversion between slag and metal compared to the larger sized ones. The overall model prediction for Mn in the hot metal has been found to be in good agreement with two data sets obtained from different size converters reported in the literature.  相似文献   

12.
安钢100 t电炉炉壁集束氧枪改造及工艺优化研究   总被引:1,自引:0,他引:1  
姬健营  王冰民  朱荣 《钢铁》2008,43(9):95-0
 安钢100 t电炉进行了炉壁集束氧枪改造,对改造后出现兑铁时间长、烧枪事故频繁、消耗高等难题进行了相关工艺优化研究,包括:兑铁系统改造、合适枪位的确定、生产组织优化、废钢料结构优化、提高吨钢输入电功率,以及吹氧、造渣、喷碳工艺优化等,取得了良好的使用效果。  相似文献   

13.
Metalloids normally get transferred at the interface of metal droplets passing through the slag system in the dropping zone and at the slag‐metal interface in the hearth zone in the lower region of a blast furnace. In these high temperature processes, the mass transport being the rate‐controlling factor, the viscosity of the slag system determines the kinetics of the refining reactions accompanied by mass and heat transfer at the metal droplets and slag interface. Slag systems generally possess random network structures comprising internal regions of weak ordering. The presence of these regions may result in non‐Newtonian behaviour of the slag. The rheological characteristics of a fluid relating to its network structure is expressed in terms of the indices consistency (k') and flow behaviour (n'). The extent of metalloids presence in hot metal is subjected to their residence time at the slag‐metal interface. The metal droplet descent through a surrounding fluid system has been studied and a co‐relation between drag Reynolds number and modified Reynolds number has been obtained. This correlation has been used to determine the drag velocity of a metal droplet falling through a slag system and the residence time distribution (RTD) of the metalloids at the slag‐metal interface in the lower region of the blast furnace.  相似文献   

14.
秦军 《特殊钢》2008,29(6):44-46
建立了70 t电弧炉冶炼中高碳钢的留碳操作的数学模型。按照出钢时钢水碳含量的要求,基于入炉废钢和铁水成分,控制超音速集束氧枪的吹炼参数,合理使用炉门自耗式碳氧枪和采用相应的炉渣碱度,以实现目标留碳操作。0.55%C钢的冶炼实践表明,当热装铁水30%时,电弧炉终点[C]为0.40%~0.65%的炉次≥85%,显著降低了冶炼成本。  相似文献   

15.
采用几何相似比1∶10水模型对180 t顶底复吹转炉内射流与熔池相互作用进行模拟试验,研究了在最佳枪位(150 mm)时氧气流量(38~42 m3/h)对均混时间的影响以及最佳顶枪流量(39 m3/h)下聚合射流氧枪枪位(40~150 mm)对均混时间的影响。结果表明,聚合射流氧枪对熔池的搅拌效果完全能达到顶底复吹的搅拌效果,如能在转炉冶炼工艺中应用,可取消底吹系统,简化转炉设备,提高转炉炉龄。  相似文献   

16.
为使大型转炉的生产率达到国际先进水平,在300~350t大型氧气转炉上实现4.0~5.0m3/(t·min)的高供氧强度吹炼,设计了新的大流量氧枪喷头,并在1∶10的有机玻璃模型上进行氧射流与熔池作用的水模实验。水模实验大流量氧枪喷头的主要参数为:喷头孔数6~8个,采用双角度交错布置,喷孔倾角10°~17°,喷孔出口马赫数2.0~2.2。同时测定了枪位高度为1.8~2.6m时的熔池喷溅率、混匀时间和穿透深度。研究结果表明,大流量新喷头的喷溅量和射流对熔池的穿透深度都在转炉正常吹炼范围内,熔池混匀时间平均缩短6s,泡沫渣可将喷溅率降低50%。大流量新喷头良好的吹炼性能为大型转炉高供氧强度吹炼的氧枪喷头设计提供了可靠的数据。  相似文献   

17.
利用带有中心主孔的Laval喷管和16个副孔的聚合射流氧枪喷头的氧枪射流检测系统研究氧枪射流中心速度的衰减规律,测试常温氦气代替高温燃烧的保护气体作为伴流而产生的聚合射流,以及高温以主孔通空气,两副孔分别通入氧气和丙烷来产生保护气体模拟的聚合射流。结果表明,聚合射流特性优于传统射流特性,常温下随氦气入口压力增加,中心射流的轴向衰减变缓,获得比传统超音速射流更长的超声速区域;高温下通过调节燃气和氧气流量可改变环状火焰长度,同时可以根据生产实际情况变化主射流长度,满足冶炼工艺要求。  相似文献   

18.
Decarburization, slag formation, foaming, and slopping in basic oxygen furnace (BOF) can now be partly understood, and to some extent predicted with the help of several on-line measurements and on-line control models. The principal reaction in BOF is decarburization. The bulk of the decarburization takes place in the turbulent region of jet impact irrespective of the fact whether the slag is solid, liquid or foamy. Metal droplets are ejected from the jet impact zone but it is difficult to distinguish the decarburization occurring in the bulk metal from that occurring in the droplets. Slag in BOF is heterogeneous and always contains some entrained gas bubbles and solid material (either un-dissolved or precipitated). At no stage the slag is 100 % liquid. A significant part of the metal droplets fall back and travel through the semi liquid slag. Through this mechanism the droplets can cause slag foaming and slopping in the BOF. Phenomenon of slag foaming and slopping can be monitored and controlled by following, dynamically, the audio signals, gas flow rate and composition, by tracking ‘Chaos’ in chemical reactions, by manipulating the chaotic attractors, and by monitoring the lance water temperature and weight. Relative stability potential (RSP) diagrams are found to be a good indicator of the dynamics of process inside the BOF and help in advance prediction of the impending chaos.  相似文献   

19.
利用GAMBIT建立了轴向计算长度2 200 mm和径向计算长度800 mm的超音速氧枪的数学模型,并采用FLUENT软件对氧枪射流特性进行数值仿真研究。分析了单孔氧枪超音速射流特性,以及操作压力(0.6~1.0 MPa)和环境温度(298~1 873 K)对流动特性的影响。结果表明,入口滞止压力在设计压力±25%内对射流轴向衰减及径向扩展影响不大,其与射流的超音速区长度呈二次曲线关系变化,随环境温度升高,射流轴向衰减变缓慢,核心区长度增加,超音速区长度和环境温度呈线性关系,环境温度对射流径向影响很小。  相似文献   

20.
旋流喷头的参数确定及其应用研究   总被引:1,自引:0,他引:1  
通过流体力学测试和冷态模拟实验,证明旋流喷头具有良好的特性。安钢和酒钢使用旋流喷头后,化渣效果好,起渣时间提前,冶炼过程平稳易控制,供氧时间缩短,耗氧量降低。从冲击动力、喷溅量和流股特性等方面分析了旋流喷头的优点,认为可达到溅渣护炉的要求,并能提高溅渣的均匀性和效果  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号