首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef ( < 40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ∼ 190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (∼ 2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.  相似文献   

2.
Identification of lake trout spawning sites has focused on cobble substrates associated with bathymetric relief (e.g., ‘contour’ or ‘slope’ along reefs), but this ‘model’ may be narrow in scope. Previous telemetry work conducted near Drummond Island, USA, Lake Huron, identified egg presence in substrates at the base of large boulders (>1 m diameter); however, the extent of this phenomenon was unknown. Telemetry data paired with multi-beam bathymetry identified a 0.63 km2 area used by lake trout characterized by low bathymetric relief and numerous (~269) large boulders (>1 m diameter) with small-diameter substrates at their bases. Diver surveys revealed egg presence at all 40 boulders surveyed, exclusively associated with clean gravel-cobble (0.6–42 cm) substrates in undercut areas beneath overhanging edges of boulders and in narrow spaces between adjacent boulders. Egg presence was not associated with boulder or substrate physical characteristics which highlighted the possible importance of interstitial currents. Successful incubation in these habitats was inferred by capture of free embryos and post-embryos the following spring using traps and an electrofishing ROV although at lower densities than at popular spawning habitats nearby (1–3 km away). Free embryos and post-embryos were also caught where eggs were not observed the previous fall including unexpectedly on top of boulders which suggested that post-hatch stages may move more than previously thought. Extensive use of boulder-associated habitats for spawning, egg incubation, and early growth suggested this undescribed habitat type may provide an unanticipated contribution to total available lake trout spawning habitat and recruitment in the Great Lakes.  相似文献   

3.
Julian's Reef is an historical spawning ground for lake trout (Salvelinus namaycush) in southwestern Lake Michigan. It is a designated lake trout refuge and is the focus of lake trout restoration efforts in Illinois waters of the lake. We studied the reef to determine its potential as spawning habitat for stocked lake trout. We used side-scan sonar and a remotely operated vehicle equipped with a video camera to survey and map 156 ha of lake bed on the southeast portion of the reef, where an earlier study revealed the presence of loose-rock substrate potentially suitable for use by spawning lake trout. Our survey showed that the substrate on the reef that most closely resembled that described in the literature as suitable for spawning by stocked lake trout in the Great Lakes was rubble patches with interstitial depths greater than 20 cm. These rubble patches occupied about 2 ha of the 13-ha expanse of bedrock and rubble substrate near the reef crest in the surveyed area. We estimated that these rubble patches, if fully used by spawning lake trout, could accommodate egg deposition by at least 1,300–3,300 2.7-kg females.  相似文献   

4.
Restoration of a wild-produced lake trout Salvelinus namaycush population in Lake Ontario has not been successful despite the adult population often meeting or exceeding restoration targets. Lack of high-quality spawning habitat in Lake Ontario is suggested as one impediment to recruitment of wild lake trout, although the quantity and location of spawning habitat is poorly understood. If high-quality spawning habitat is limited in Lake Ontario, lake trout may be using uncommon spawning locations such as rivers. Anecdotal angler accounts point to the Niagara River as a lake trout spawning location. To better understand the potential of the Niagara River as a spawning location, egg and juvenile fish collections were conducted 12–14 river kilometers from the mouth of the Niagara River from 2010 to 2012; and mature female lake trout with surgically implanted acoustic tags were monitored from 2015 to 2019. Genetic analyses confirmed 60% of collected eggs and 93% of collected post-hatch juvenile fish in the Niagara River were lake trout. Tagged female lake trout returned to the Niagara River over consecutive years during the spawning season. The short duration of lake trout presence in the river (mean = 56 days/year) suggests female lake trout use the Niagara River primarily for spawning. Diversity in spawning locations may provide lake trout population’s resilience against environmental variability through a portfolio effect. Improved identification of riverine spawning locations, including their overall contribution to wild recruitment, may be a useful tool for managers to restore a wild-produced population of lake trout in Lake Ontario.  相似文献   

5.
The accidental introduction of round gobies (Neogobius melanostomus) into the North American Great Lakes has raised concerns about their potential impacts on local fauna. Gobies have similar habitat and spawning requirements to mottled sculpins (Cottus bairdi) and slimy sculpins (C. cognatus), and may already be displacing sculpins where the ranges of the species overlap. Like sculpins, gobies are capable of penetrating interstitial spaces to acquire food, and therefore may become predators of interstitially incubating lake trout eggs. Laboratory experiments were conducted to compare egg consumption rates and critical size (the minimum size at which a fish was capable of ingesting an egg) between round gobies and mottled sculpins. Predation by both species on lake trout eggs and fry was also examined in two grades of substrate (cobble and gravel). Mottled sculpins consumed larger numbers of eggs than round gobies of similar size, and were capable of ingesting eggs at smaller sizes than gobies. Both gobies and sculpins had lower foraging success on smaller substrates (gravel) than on cobble. Gobies are currently present at higher densities than sculpins in areas where they are established in the Great Lakes. The similar predation of lake trout eggs by round gobies and mottled sculpin and high densities the goby has achieved at some Great Lakes sites leads to the prediction that the round goby may negatively affect lake trout reproduction and therefore rehabilitation.  相似文献   

6.
The Great Lakes basin was historically populated by multiple, coevolved coregonine species, but much of that diversity has been lost. In Lakes Erie and Ontario, both lake whitefish (Coregonus clupeaformis) and cisco (Coregonus artedi) occurred in high numbers before habitat degradation, overfishing, invasive species, and other factors caused significant declines. There is growing interest in restoring these populations, and suggested actions include restoration of critical habitats such as spawning habitat. Unfortunately, our current understanding of lake whitefish and cisco spawning habitat characteristics and locations in these lakes is limited. To highlight areas of potential importance for conservation and restoration, we used random forest models and data on historical spawning locations to predict lake whitefish and cisco spawning habitats based on hypothesized key factors including wind fetch, ice cover duration, distance from 1st and 6th order tributaries, and lake bottom substrate. Our model accurately predicted spawning habitat locations for 71% and 54% of cases for lake whitefish and cisco, respectively. Fetch was the most important variable in the lake whitefish model, with spawning habitats being most likely to occur in regions of low to moderate fetch. Cisco spawning habitats were most likely to occur in areas of relatively low fetch near a 1st order stream. We used these models to predict spawning habitat locations for both species across Lakes Erie, Ontario, and St. Clair. Our results improve our understanding of lake whitefish and cisco spawning habitat characteristics and will aid in the spatial prioritization of actions to restore these native fishes.  相似文献   

7.
Lake trout from Seneca Lake provide an important source of stock for Great Lakes rehabilitation but the lake trout in Seneca Lake have been hatchery supported, themselves, for many years. Hatchery catch data show a continued decline in lake trout population and this is assumed to reflect changes in hatchery stocking, fishing pressure, and lamprey predation. A commensurate increase in the smelt population, since 1973, may have also contributed to the decrease of natural recruitment by lake trout. No indication of reduced egg survival was found in the hatchery which might be related to lake contamination effects. Our survey observations (1980–81) indicate that the lower parts of deep water cobble gravels have become much degraded by fine particulates, making such sites unsuitable for spawning lake trout. It is thought that natural replacement in Seneca Lake is strongly dependent on successful hatch of eggs laid at depths of 25 to 35 m, but the observed relationship between egg deposition and optimal thermal conditions seems to be anomalous. Since no controlling relationship was found between long-term decline of the lake trout population and climatic variation, it is believed that degradation of lake spawning sites has strongly influenced natural recruitment.  相似文献   

8.
The rehabilitation of extirpated lake trout (Salvelinus namaycush) in the Great Lakes and Lake Champlain has been hindered by various biological and physiological impediments. Efforts to restore a lake trout fishery to Lake Champlain include hatchery stocking and sea lamprey control. Despite these management actions, there is little evidence of recruitment of naturally-produced fish in annual fall assessments. Spawning occurs at multiple sites lake-wide in Lake Champlain, with extremely high egg and fry densities, yet sampling for juvenile lake trout has only yielded fin-clipped fish. To investigate this recruitment bottleneck, we assessed predation pressure by epi-benthic fish on emergent fry on two spawning reefs and the subsequent survival and dispersal of fry in potential nursery areas. Epi-benthic predators were sampled with 2-h gillnet sets at two small, shallow sites in Lake Champlain throughout the 24-h cycle, with an emphasis on dusk and dawn hours. In total, we documented seven different species that had consumed fry, with consumption rates from 1 to 17 fry per stomach. Rock bass and yellow perch dominated the near-shore fish community and were the most common fry predators. Predator presence and consumption of fry was highest between 19:00 and 07:00. Predators only consumed fry when fry relative abundance was above a threshold of 1 fry trap− 1 day− 1. We used an otter trawl to sample for post-emergent fry adjacent to the reef, but did not capture any age-0 lake trout. Due to the observed predation pressure by multiple littoral, species on shallow spawning reefs, lake trout restoration may be more successful at deep, offshore sites.  相似文献   

9.
Egg deposition in deep water by a self-sustaining lake trout population is reported for Keuka Lake, one of the Finger Lakes of New York. Deep water spawning may be a critically important component to the restoration of lake trout in the Great Lakes. In 2002, spawning occurred on or about December 6 at a water temperature of 6.7°C at depths ranging from 24.6 to 27.7 m, with an average egg abundance of 1,318 eggs·m−2. The population, presumably the native strain, spawned on a steep slope (30–40°) on small shale substrate with little interstitial space. Abundance of egg predators was low and limited to slimy sculpins (6.9 sculpins·m−2). Early mortality syndrome (EMS), associated with an alewife diet-mediated thiamine deficiency in parents, was detected in larvae reared from the wild-caught eggs, but was of insufficient magnitude to eliminate natural reproduction in Keuka Lake.  相似文献   

10.
Lake trout Salvelinus namaycush fry treated with heated water to create thermal marks in their otoliths were stocked at Sve's Reef in Minnesota waters of Lake Superior in 1994, 1995, and 1996. These fish began to reach maturity in 2000, and were vulnerable to annual assessment gill nets set at several locations along the Minnesota shoreline. Captured fish also included fin-clipped lake trout stocked as yearlings, and naturally reproduced (wild) lake trout. Otoliths from 3106 unclipped lake trout were aged and examined for thermal marks from 2000 to 2007, of which 1152 were from the target year classes (1994–1996). Thermal marks were found in otoliths from 64 fish, or 5.6% of those in the target year classes, demonstrating that stocked fry contributed to the adult lake trout population in Minnesota waters. Although numbers of recaptured fish were too low to demonstrate statistically significant differences, higher recapture rates of marked fish at Sve's Reef in fall and spawning assessments suggest that these fish may have imprinted at the stocking location and homed back to this area to spawn. Wild lake trout populations in Lake Superior may be approaching fully rehabilitated levels, but recovery in the lower Great Lakes has progressed more slowly, and evidence of success with fry stocking could benefit those populations.  相似文献   

11.
The St. Marys River connects Lake Superior to Lake Huron, comprising the international border between Michigan, United States, and Ontario, Canada. This Great Lakes connecting channel naturally encompasses various habitats including lakes, wetlands, islands, tributaries, side channels, and main channels. The St. Marys River Rapids are shallow rock areas with high flow velocities (>1 m/s) in the upper river adjacent to the navigation locks and electric power generating stations, while the Little Rapids are shallow, recently restored rocky areas with lower velocities located about 7 km downstream. The St. Marys River Rapids provide important spawning habitat for several native and introduced fishes, but spawning by lake sturgeon (Acipenser fulvescens) was not previously documented. We sampled for lake sturgeon eggs and larvae in both locations during June and July 2018–2019 using weekly benthic egg mat lifts and overnight D-frame larval fish drift nets. Viable lake sturgeon eggs (11 in 2018, 45 in 2019) were collected in the tailrace of a hydroelectric power facility adjacent to the St. Marys River Rapids. Larval lake sturgeon (21 in 2018, 1 in 2019) were collected in the same area as the eggs. Neither lake sturgeon eggs nor larvae were collected at Little Rapids in either year. Our results are the first documentation of successful lake sturgeon spawning and larval drift in the upper St. Marys River. While our observations showed spawning in a human-made tailrace area, the fate of larvae produced here is unknown and warrants further research.  相似文献   

12.
Lake trout, Salvelinus namaycush, spawning in the Great Lakes occurs primarily on cobble substrate at relatively shallow water depths that can experience strong water currents. Strong currents may limit embryonic survival by damaging or displacing eggs, but may also reduce the accumulation of fine material and limit foraging by potential egg predators. To better understand the importance of currents, we evaluated the role of currents in spawning habitat selection, egg density and survival, and egg predator density at a spawning reef in Lake Champlain (USA). Most spawning occurred one week after the largest storm event associated with the strongest currents and greatest upwelling. Highest spawning activity was associated with a relatively shallow part of the reef that had the highest current velocity and greatest potential for egg displacement. Within the interstices, the survival of naturally deposited eggs was unrelated to the concurrent loss of artificial eggs. We propose that the reproductive strategy of spawning on shallow areas of a reef that have the highest current velocity and high potential for egg loss represents a type of bet hedging to optimize survival of those embryos that remain within interstices. This strategy may have evolved in response to environmental stochasticity that resulted in higher egg survival.  相似文献   

13.
Non-native rusty crayfish are abundant egg predators on spawning reef habitats for lake trout and coregonines in northern Lake Michigan. To better understand rusty crayfish life-history on these unique habitats, we conducted monitoring in 2012 and 2013 at four locations previously identified as spawning areas for native fish. With the aid of a graphical causal model, we conducted an exploratory statistical analysis using a Bayesian multilevel modeling approach with model selection based on information criteria to identify important environmental variables for predicting rusty crayfish distribution and abundance on spawning reefs. We also compared seasonal trends in relative abundance, inferred from catch-per-unit-effort calculations from trapping, to previously reported accounts from a smaller inland lake. The results from our modeling provide evidence of size-class segregation across subtle changes in habitat characteristics of spawning reefs. Specifically, we found evidence that the distribution of >30 mm rusty crayfish was only weakly related to rock density (#/m2) relative to juveniles and smaller size classes. We also observed highest relative abundances from minnow trap monitoring in mid-October when water temperatures averaged 13.9 °C, which is later in the year and at cooler temperatures than similar monitoring from smaller inland lakes has reported. We hypothesize that unique environmental conditions elicit novel life-history responses from rusty crayfish on Lake Michigan spawning reefs and discuss our findings in the context of native fish restoration in the Laurentian Great Lakes.  相似文献   

14.
Native lake trout were extirpated from Lake Erie around 1965 and committed restoration efforts began in 1982. In 2021 and 2022, a total of six lake trout (Salvelinus namaycush) in the free embryo or post-embryo life stage were captured in lake trout embryo traps in Lake Erie offshore of Shorehaven Reef, NY. This represents the first conclusive evidence of successful natural reproduction since extirpation. Trapping locations were identified using the results of a fine-scale positioning acoustic telemetry array, visual observations of adult lake trout exhibiting spawning behavior, and underwater cameras to visually identify possible spawning locations. Lake trout utilized a very specific spawning habitat type—the eastern side of shallow offshore humps in 5–8 m of water. These sites were comprised of habitat typically associated with lake trout spawning with slopes of 5–14° and clean rubble-cobble sized rock with visible interstitial spaces. Genetic barcoding was used to identify the post-embryo stage salmonids to species, and microsatellite genotypes assigned strongly to the Seneca strain which comprises the majority of the adult population. These findings represent a significant milestone for lake trout rehabilitation efforts in Lake Erie, confirming that successful reproduction to the post-embryo stage is possible and supporting continued rehabilitation efforts by Lake Erie management agencies.  相似文献   

15.
Lake trout spawn primarily in lakes, and the few river-spawning populations that were known in Lake Superior were believed to be extirpated. We confirmed spawning by lake trout in the Dog River, Ontario, during 2013–2016 by the collection of and genetic identification of eggs, and we describe spawning meso- and microhabitat use by spawning fish. Between 2013 and 2016, a total of 277 lake trout eggs were collected from 39 of 137 sampling locations in the river. The majority of eggs (220) were collected at the transition between the estuary and the river channel crossing the beach. Lake trout eggs were most often located near the downstream end of pools in areas characterized by rapid changes in depth or slope, coarse substrates, and increased water velocities, where interstitial flows may occur. Depths in wadeable areas where eggs were found averaged 0.9?m (range: 0.4 to 1.3?m) and substrate sizes consisted of large gravel, cobble, and boulder; comparable to spawning characteristics noted in lakes. Water velocities averaged 0.66?m·s?1 (range: 0.33 to 1.7?m3·s?1) at mid-depth. This information on spawning habitat could be used to help locate other remnant river-spawning populations and to restore river-spawning lake trout and their habitat in rivers that previously supported lake trout in Lake Superior. The Dog River population offers a unique opportunity to understand the ecology of a river spawning lake trout population.  相似文献   

16.
Reproduction by hatchery lake trout, critical for rehabilitation of lake trout stocks in the Great Lakes, had not been previously described and measured. Reproduction by hatchery lake trout on a man-made spawning reef in Presque Isle Harbor, Lake Superior, in 1977-80 was qualitatively and quantitatively described using gill nets, egg traps, and fry traps. Scuba divers measured physical parameters of the reef. Lake trout spawned during a 15- to 28-day period between 12 October and 14 November mainly during 1800–2000 hours. The Petersen single census was a better method of estimating adults than either multiple-census or fecundity-egg deposition methods. The Petersen estimate of adults was nearly 4,000 males and 1,900 females in 1979. Egg deposition and swim-up fry production ranged from 122 to 518/m2 and 20 to 46/m2, respectively. Substrate on the man-made reef was a 27- to 42-cm thick layer of granite and limestone cobbles 6 to 20 cm in diameter. Spawning behavior and quantitative aspects of reproduction by hatchery lake trout were similar to that previously reported for native lake trout in the Great lakes and elsewhere. Man-made reefs may be a valuable lake trout management tool.  相似文献   

17.
Managers have long embraced the need to maintain diversity as a requisite condition for population and community sustainability. In the case of Great Lakes lake trout, diversity has been severely compromised. The identification of new gamete sources may be beneficial to lake trout reintroduction efforts, particularly in situations where native stocks have been completely extirpated such as in Lake Michigan. Lake trout from Elk Lake, Michigan, are genetically distinct from domestic hatchery strains and historical forms of lake trout from Lake Michigan. Importantly, Elk Lake fish were genetically distinct from Marquette strain lake trout which were previously stocked into Elk Lake. Elk Lake fish were most similar to Lake Michigan basin-derived Lewis Lake (LLW) and Green Lake (GLW) hatchery strains and to historical Lake Michigan populations from the Charlevoix, Michigan area. While all individuals exhibited characteristics of lean form lake trout, the body shape of lake trout from Elk Lake, stocked lean fish from Lake Michigan and Lake Superior wild lean strains from near Isle Royale differed. Elk Lake fish were more fusiform, elongate, and streamlined with a narrower caudal peduncle compared to hatchery lean strains and wild lean forms from the Isle Royale region of Lake Superior. The lake trout population in Elk Lake is a remnant of a now extirpated native Lake Michigan population that was established either by natural colonization or stocking from historical Lake Michigan populations. Elk Lake lake trout is as genetically diverse as other strains used in Great Lakes reintroduction efforts and likely represent a viable gamete source representing genetic diversity lost from Lake Michigan.  相似文献   

18.
Over the last century geological studies of the ancestral Great Lakes have confirmed that the large surface load of the Laurentide ice sheet deformed the region causing tilting of ancient lake shorelines. Models of this glacial isostatic adjustment mechanism have promoted understanding of this process but have only included ice sheet loads as the source of earth deformation in the region. We describe a method, utilizing a model of glacial isostatic adjustment combined with GIS, that recreates the paleohydrology of the Great Lakes. Predictions include the extent of late glacial, postglacial, and Holocene lakes and their associated outlets and bathymetries. This predicted history of the Great Lakes is similar to that obtained from a century of detailed field studies but our method uses only the present digital elevation model, a prescribed ice sheet chronology, and an assumed earth viscoelastic rheology. Ancient lake bathymetry predictions provide an estimate of water loads associated with each lake. The effect of these lake loads upon vertical deformation of the Great Lakes region is shown to be small, less than 15 m, but not insignificant when compared to approximately 150 m of deformation forced by ice and ocean loads. Maximum lake-induced deformation is centered upon Lake Superior where water depths were greatest. Where topography is low relief, prediction of shoreline locations should include the lake loading effect as well as the ice and ocean loads.  相似文献   

19.
Lake trout stocked in the Great Lakes appear to spawn primarily on shallow reefs (< 16 m deep), particularly on breakwaters or water intake lines. Shallow water substrates are being rapidly colonized by zebra mussels, potentially resulting in degraded substrate and interstitial water quality. The attraction of spawning lake trout to new substrate and the effect of zebra mussels on spawning success was examined. Lake trout eggs and fry were collected on clean cobble and cobble fouled with zebra mussels at the Port of Indiana in southern Lake Michigan, and on each of three recently constructed submerged reefs. Egg deposition was similar among all sites except on new, unfouled cobble, where deposition was 11 to 29 times higher, depending on the collection device used. The ratio of empty egg chorions to intact eggs was similar among all sites except the fouled substrate, where the ratio was 129× higher (P < 0.001). Fry catches were similar on fouled and unfouled substrate, but 6.5 × higher on one of the new reefs (P < 0.01). In laboratory incubators, egg hatching rates were similar in cobble with and without zebra mussels. Lake trout were attracted to spawn on newly constructed artificial reefs, but the presence of zebra mussels appeared to reduce egg deposition and increase damage to eggs. Artificial reefs may successfully increase the amount of spawning substrate available for lake trout, but if they are constructed in shallow water they may not be productive areas for egg incubation and fry hatch due to the presence of zebra mussels, shallow-water egg and fry predators, and storm surge.  相似文献   

20.
The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号