首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A basin-wide water quality survey for the radionuclide tritium during 2017 and 2019 provides an overview of levels in Great Lakes surface waters. All data, together with those from similar basin-wide surveys since the early 1990s, are included in the Supplemental Material. Values of tritium are lowest in Lake Superior and are highest within a region of northwestern Lake Ontario, as well as locally near a known source in Lake Huron. Twenty-year trends show declines in all of the lakes, and this is consistent with the decline in fallout from past nuclear weapons testing, the major source of tritium to the lakes. Longer-term trends, developed using values from the literature, demonstrate a marked overall reduction in tritium values since maxima in the late 1960s, with a slowing rate of decline in the most recent decade. As atmospheric fallout is reduced, the relative importance of other sources is increasing. Known releases, primarily from nuclear generating stations using heavy water, could therefore drive any future changes in Great Lakes tritium levels.  相似文献   

2.
Nitrogen fixation (NFix) is an important, yet understudied, microbial process in aquatic ecosystems, especially in the Laurentian Great Lakes (LGL). To date, a dearth of nitrogen fixation rate measurements exists in the LGL, are from temporally isolated studies, and were collected primarily from near-shore and surface water environments. Evidence of nitrogen accumulation across the Laurentian Great Lakes suggest that we do not have a firm grasp on nitrogen cycling in large lakes. Thus, we sought to quantify the spatial variability of NFix in the LGL. We found lakes are significantly different in NFix rates from one another and that rates are depth dependent. Overall mean surface NFix rates of Lakes Superior, Michigan, Huron, Erie and Ontario were 0.024, 0.020, 0.069, 0.145, and 0.078 (nmol N2/L/hr), respectively. Likewise, we found the Western, Central and Eastern basins of Lake Erie are significantly different in NFix rates (0.1540, 0.1032, 0.0738 nmol N2/L/hr). However, we found no significant difference in NFix rates between near and offshore sites in Lake Erie, which may have been biased due to a cyanobacterial bloom containing a nitrogen-fixing Dolichospermum sp. Linear regression models indicate NFix is generally positively correlated with chlorophyll-a concentration and negatively correlated with oxidized nitrogen species concentrations. However, Lakes Erie and Huron exhibited a positive linear relationship with oxidized nitrogen, suggesting that NFix may persist to meet cellular and community nitrogen demands. Together, our data highlight NFix is important despite the presence of abundant nitrogen in all LGL.  相似文献   

3.
The zooplankton communities of several Laurentian Great Lakes have shifted toward greater biomass of calanoid copepods, particularly Limnocalanus macrurus, since the 1990s. Limnocalanus is an omnivore that feeds on large phytoplankton cells, ciliates, rotifers, and small crustacean zooplankton, especially copepod nauplii, and it may be an increasingly important zooplanktivore in these systems. Although there is previous research examining Limnocalanus predation rates on nauplii, we do not know if the presence of phytoplankton affects predation rates. Our initial experiments confirmed Limnocalanus preference for nauplii over small copepodites. Additional experiments showed that Limnocalanus feeding rates on nauplii decreased by 50% at the highest phytoplankton concentrations tested. Limnocalanus fed more on the larger algae tested (Cryptomonas, Cryptophyta, 40 µm) than on the smaller taxa (Scenedesmus, Chlorophyta, 10 µm). We used stable isotope analysis to infer Limnocalanus trophic position in the five Laurentian Great Lakes by comparing Limnocalanus with simultaneously captured Leptodiaptomus sicilis, another calanoid copepod known to feed on phytoplankton and microzooplankton. This analysis showed Limnocalanus at higher trophic positions in the more oligotrophic lakes Huron, Michigan, and Superior than in lakes Ontario and Erie. Summer Limnocalanus trophic position was inversely related to both the site-specific concentration of algae in the deep chlorophyll layer and a trophic state index based on spring chlorophyll and total phosphorus. Our results indicate that predation by Limnocalanus on zooplankton depends on lake algal abundance, and that feeding rates on nauplii by an individual Limnocalanus adult are likely higher in the more oligotrophic lakes.  相似文献   

4.
Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. We determined nutritional support of coastal fishes from 12 wetland-nearshore habitat pairs using stable isotope analyses, which revealed differences among species and systems in multi-habitat use. Substantial (proportions?>?0.30) nutrition often came from the habitat other than that in which fish were captured. Nearshore subsidies to coastal wetlands indicate wetlands are not exclusively exporters of energy and materials; rather, there is reciprocity in the mutual energetic support of nearshore and wetland food webs. Coastal wetland hydrogeomorphology influenced the amount of multi-habitat use by coastal fishes. Fishes from systems with relatively open interfaces between wetland and nearshore habitats exhibited less nutritional reliance on the habitat in which they were captured, and higher use of resources from the adjacent habitat. Comparisons of stable isotope analyses of nutrition with otolith analyses of occupancy indicated nutritional sources often corresponded with habitat occupancy; however, disparities among place of capture, otolith analyses, and nutritional analyses indicated differences in the types of support those analyses inform. Disparities between occupancy information and nutritional information can stem from movements for support functions other than foraging. Together, occupancy information from otolith microchemistry and nutritional information from stable isotope analyses provide complementary measures of the use of multiple habitats by mobile consumers. This work underscores the importance of protecting or restoring a diversity of coastal habitats and the hydrologic linkages among them.  相似文献   

5.
An updated diatom (Bacillariophyta) checklist for the Great Lakes is provided. The present checklist supplants the preliminary checklist published in The Journal for Great Lakes Research in 1978 and effectively represents a 20-year update. A series of procedures were used in this update which included: a reexamination of taxa reported in the 1978 list, additions of taxa reported from the Great Lakes during the past 20 years, and a revision of taxonomy, commensurate with systematic and nomenclatural changes which have occurred primarily during the past 8 years. 1488 diatom species or subordinate taxa are considered to be correct reports from the Great Lakes out of the 2188 diatom entities reported in the list. Of the 124 genera reported 105 are considered to be names in current use. The number of diatom species reported represents a 16.5% increase and the number of genera reported represents a 78% increase over those reported in the 1978 checklist. 13% of the species reported and 32% of the genera reported are due solely to nomenclatural changes. Results indicate that Great Lakes diatoms are a biodiverse component of the ecosystem, commensurate with the wide range of habitats found in the system. The present checklist indicates that most of the newly added species are primarily benthic or periphytic in nature and these represent largely understudied habitats. These results suggest that the present checklist may only represent approximately 70% or less of the extant diatom flora of the Great Lakes system.  相似文献   

6.
A mass balance modelling approach was used to help understand the movement and impacts of tritium discharged from Canada Deuterium Uranium (CANDU) reactor facilities into Lake Ontario. A concentration-time model, previously developed, is updated in this study. Historical and projected tritium concentrations for Lake Ontario waters are presented. A model calculated accident scenario (10 times highest accidental release) indicates the importance of dilution to the dispersion of tritium; a “modelled” release in 2016 has tritium levels declining by the year 2030 to “previous 2016 levels”. As part of the mass balance approach, lake-bottom sediments were considered as potential radionuclide “sinks”. Tritium porewater results were noted as perturbations at depth in both short (30–50 cm cores) and long sediment core profiles (to 300 cm). These change in tritium concentrations with depth may have been due to CANDU emissions (as the most likely source) over time, based on records of accidental releases of tritiated coolant water. However, the exact process (advection and/or diffusion) responsible for the penetration of tritium into the lake bottom requires additional physical and hydrogeological characterization of the lake bottom sediments.  相似文献   

7.
8.
Aquatic hypoxia within the Laurentian Great Lakes has contributed to various adverse ecological consequences and stimulated research interest in recent decades. An analysis of published peer-reviewed journal articles from 2000 to 2020 demonstrates an increasing trend of studies related to hypoxia in the Laurentian Great Lakes. However, the majority of these studies (78%) focus on Lake Erie and in particular the well-documented hypolimnetic hypoxic conditions that develop in the central basin of Lake Erie. This hypoxic zone is relatively large (up to 1.5 million ha), has substantial ecological effects, and motivates monitoring programs and water quality improvement initiatives. Nonetheless, the hypoxic zone in the central basin of Lake Erie is only one of over twenty documented hypoxic zones in the Laurentian Great Lakes. Moreover, hypoxic conditions in the Great Lakes are quite diverse. Here, we define and characterize a four-fold classification of Great Lakes hypoxic conditions: 1) hypolimnetic hypoxia, 2) over-winter hypoxia, 3) diel hypoxia, and 4) episodic hypoxia. We suggest that Great Lakes research and monitoring programs should seek to more broadly document hypoxic conditions and develop models to predict the temporal and spatial occurrence of hypoxia. Such efforts are particularly timely as future climatic conditions contributing to warmer temperatures, longer and more intense stratified periods, increased spring nutrient loading and more variable allocthonous inputs are expected to exacerbate three of the four hypoxic conditions described for the Great Lakes (hypolimnetic, diel, and episodic hypoxia).  相似文献   

9.
We examined factors that influence the energy base of Great Lakes coastal wetland food webs across a basin-wide gradient of landscape disturbance. Wetland nutrient concentrations were positively correlated with a principal components-based metric of agricultural practices. Hydraulic residence time influenced the energy base of wetland food webs, with high residence-time systems based mostly on plankton and low residence-time systems based mostly upon benthos. In systems with plankton, the importance of planktonic carbon to the resident fish community generally increased with residence time. A stronger relationship was apparent with an index of nutrient loading that combined residence time and nutrient concentration as the predictor (R2 = 0.289, p = 0.026). Shifts toward plankton-based food webs occurred at relatively low levels of loading. In riverine wetlands without plankton, contributions of detrital carbon to fish communities decreased significantly in response to watershed disturbance that reflected nutrient loading. In a third class of wetlands the wetland-resident fish communities were not entirely supported by within-wetland carbon sources and were significantly subsidized by nearshore habitats, which provided 35 (± 22) to 73 (± 9) % of fish community carbon. When lake-run migrant fish were included in the analyses, nearshore subsidies to all 30 wetland food webs ranged from 3 (± 2) to 79 (± 12) %. We obtained similar ranges when examining nearshore contributions to a single wetland species, northern pike. These results illustrate the spatial scale and the degree to which the energetics of coastal wetland food webs are influenced by interactions with their watersheds and Great Lakes.  相似文献   

10.
A database of nearly 500 analyses of perchlorate in water samples from the Laurentian Great Lakes (LGL) watershed is presented, including samples from streams, from the Great Lakes and their connecting waters, with a special emphasis on Lake Erie. These data were assessed to test an earlier hypothesis that loading of perchlorate to the LGL watershed is relatively uniform. Higher perchlorate concentrations in streams in more developed and urban areas appear to indicate higher rates of loading from anthropogenic sources in these areas. Variable perchlorate concentrations in samples from Lake Erie indicate transient (un-mixed) conditions, and suggest loss by microbial degradation, focused in the central basin of that lake. Interpretation of the data included estimation of annual loading by streams in various sub-watersheds, and simulations (steady state and transient state) of the mass balance of perchlorate in the Great Lakes. The results suggest uneven loading from atmospheric deposition and other sources.  相似文献   

11.
Management of a widely distributed species can be a challenge when management priorities, resource status, and assessment methods vary across jurisdictions. For example, restoration and preservation of coregonine species diversity is a goal of management agencies across the Laurentian Great Lakes. However, management goals and the amount of information available varies across management units, making the focus for management efforts challenging to determine. Genetic data provide a spatially consistent means to assess diversity. Therefore, we examined the genetic stock structure of cisco (Coregonus artedi) in the Great Lakes where the species is still extant. Using genotype data from 17 microsatellite DNA loci, we observed low levels of population structure among collections with most contributions to overall diversity occurring among lakes. Cisco from lakes Superior, Michigan, Ontario, and the St. Marys River could be considered single genetic populations while distinct genetic populations were observed among samples from northern Lake Huron. Significant within-lake diversity in Lake Huron is supported by populations found in embayments in northern Lake Huron. The Grand Traverse Bay population in Lake Michigan represents a distinct population with reduced levels of genetic variation when compared to other lakes. The different levels of within lake population structure we observed will be important to consider as future lake-specific management plans are developed.  相似文献   

12.
The Laurentian Great Lakes of North America have been a focus of environmental and ecosystem research since the Great Lakes Water Quality Agreement in 1972. This study provides a review of scientific literature directed at the assessment of Laurentian Great Lakes coastal ecosystems. Our aim was to understand the methods employed to quantify disturbance and ecosystem quality within Laurentian Great Lakes coastal ecosystems within the last 20 years. We focused specifically on evidence of multidisciplinary articles, in authorship or types of assessment parameters used. We sought to uncover: 1) where Laurentian Great Lakes coastal ecosystems are investigated, 2) how patterns in the disciplines of researchers have shifted over time, 3) how measured parameters differed among disciplines, and 4) which parameters were used most often. Results indicate research was conducted almost evenly across the five Laurentian Great Lakes and that publication of coastal ecosystems studies increased dramatically ten years after the first State of the Great Lakes Ecosystem Conference in 1994. Research authored by environmental scientists and by multiple disciplines (multidisciplinary) have become more prevalent since 2003. This study supports the likelihood that communication and knowledge-sharing is happening between disciplines on some level. Multidisciplinary or environmental science articles were the most inclusive of parameters from different disciplines, but every discipline seemed to include chemical parameters less often than biota, physical, and spatial parameters. There is a need for an increased understanding of minor nutrient, toxin, and heavy metal impacts and use of spatial metrics in Laurentian Great Lakes coastal ecosystems.  相似文献   

13.
As the global water balance accelerates in a warming climate, extreme fluctuations in the water levels of lakes and aquifers are anticipated, with biogeochemical, ecological and water supply consequences. However, it is unclear how site-specific factors, such as location, morphometry and hydrology, will modulate these impacts on regional spatial scales. Here, we report water level time series collected by citizen scientists for 15 diverse inland lakes in the upper Laurentian Great Lakes region from 2010 to 2020, and we compare these time series with those for the two largest Great Lakes, Lake Superior and Lake Michigan-Huron. Combined with historical data (1942–2010), the findings indicate that lakes spanning seven orders of magnitude in size (10?2 to 105 km2) all rebounded from record low to record high water levels during the recent decade. They suggest coherent water level oscillations among regional lakes (large and small) implying a common, near-decadal, climatic driver that may be changing.  相似文献   

14.
Climate change has the potential to alter the physical and chemical properties of water in the Great Lakes Basin, in turn impacting ecological function. This study synthesizes existing research associated with the potential effects of a changing climate on the quality and quantity of groundwater in the Great Lakes Basin. It includes analyses of impacts on (1) recharge, (2) groundwater storage, (3) discharge and groundwater-surface water (GW-SW) interactions, (4) exacerbating future urban development impacts on groundwater, (5) groundwater quality, and (6) ecohydrology.Large spatial and temporal (i.e., seasonal) variability in groundwater response to climate change between regions is anticipated. Most studies combine field observations with modelling, but many have focused only on small/medium basins. At these small scales, groundwater systems are generally projected to be fairly resilient to climate change impacts. However, modelling studies of larger basins (e.g., Grand River, Saginaw Bay, Maumee River) predict an increase in groundwater storage. Uncertainty in model simulations, particularly from climate models that are used to force hydrological models, is a major challenge. There have been too few studies to date that investigate the interplay of climate change and groundwater quality in the Great Lakes Basin to draw conclusions about future groundwater quality and ecohydrology.A summary of methods, models, and technology is provided. Model uncertainty has become an increasingly important topic and is also discussed. The study concludes with a synthesis of the main science needs to understand groundwater impacts in order to adapt to a changing climate in the Great Lakes Basin.  相似文献   

15.
Resource management agencies in the Laurentian Great Lakes routinely conduct studies of fish movement and migration to understand the temporal and spatial distribution of fishes within and between the lakes and their tributaries. This literature has never been summarized and evaluated to identify common themes and future research opportunities. We reviewed 112 studies, published between 1952 and 2010, with the goal of summarizing existing research on the movement and migration of fishes in the Laurentian Great Lakes. The most commonly studied species were Lake Trout (Salvelinus namaycush), Walleye (Sander vitreus), and Lake Sturgeon (Acipenser fulvescens). Studies relied mainly on mark-recapture techniques with comparatively few using newer technologies such as biotelemetry, hydroacoustics, or otolith microchemistry/isotope analysis. Most movement studies addressed questions related to reproductive biology, effects of environmental factors on movement, stocking, and habitat use. Movement-related knowledge gaps were identified through the literature synthesis and a survey distributed to Great Lakes fisheries managers. Future studies on emigration/immigration of fishes through lake corridors, the dispersal of stocked fishes and of stock mixing were identified as being particularly important given their potential for developing lake- or region-wide harvest regulations and stocking strategies. The diversity of tools for studying fish movement across multiple years and various spatial scales gives researchers new abilities to address key science questions and management needs. Addressing these needs has the potential to improve upon existing fisheries management practices within the complexity of multi-jurisdictional governance in the Laurentian Great Lakes.  相似文献   

16.
Ongoing human perturbations to the global inorganic carbon cycle can cause various changes in the pH and alkalinity of aquatic systems. Here seasonal and inter-annual trends in these variables were investigated in the five Laurentian Great Lakes using data from the U.S. EPA GLENDA database. These observations, along with temperature, were also used to predict the partial pressure of carbon dioxide in surface water (pCO2). There are strong seasonal differences in pH in all five lakes, with higher pH levels in summer than in spring. All lakes show significantly higher pCO2 values in spring than in summer. Michigan and Ontario show higher alkalinity values in spring; Huron shows lower spring values. Inter-annually, open-lake pH shows the highest values in all lakes around 2010, the time frame of lowest lake water levels, though only lakes Superior and Erie show statistically significant inflection points at that time. Inter-annual alkalinity trends differ considerably from those of pH. Superior’s alkalinity increases until ~2008 and then begins dropping; Ontario’s alkalinity decreases until ~2004 and then begins increasing, with the decrease coinciding with the introduction and establishment of Dreissenid mussels. The other lakes show much less clear inter-annual alkalinity trends. For pCO2, inter-annual trends in each lake show either increases from 1992 to 2019 (for Superior, Michigan, and Huron) or shifts from slightly decreasing values to increasing values for the other lakes. The timing of this shift is from 2008 to 2010.  相似文献   

17.
Relative contributions of aquaculture-origin and naturally-reproduced grass carp (Ctenopharyngodon idella) in the Laurentian Great Lakes have been unknown. We assessed occurrence and distribution of aquaculture-origin and wild grass carp in the Great Lakes using ploidy and otolith stable oxygen isotope (δ18O) data. We inferred natal river and dispersal from natal location for wild grass carp using otolith microchemistry and estimated ages of wild and aquaculture-origin fish to infer years in which natural reproduction and introductions occurred. Otolith δ18O indicated that the Great Lakes contain a mixture of wild grass carp and both diploid and triploid, aquaculture-origin grass carp. Eighty-eight percent of wild fish (n = 49 of 56) were caught in the Lake Erie basin. Otolith microchemistry indicated that most wild grass carp likely originated in the Sandusky or Maumee rivers where spawning has previously been confirmed, but results suggested recruitment from at least one other Great Lakes tributary may have occurred. Three fish showed evidence of movement between their inferred natal river in western Lake Erie and capture locations in other lakes in the Great Lakes basin. Age estimates indicated that multiple year classes of wild grass carp are present in the Lake Erie basin, recruitment to adulthood has occurred, and introductions of aquaculture-origin fish have happened over multiple years. Knowledge of sources contributing to grass carp in the Great Lakes basin will be useful for informing efforts to prevent further introductions and spread and to develop strategies to contain and control natural recruitment.  相似文献   

18.
Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton-zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.  相似文献   

19.
Accounting for community opinions of environmental restoration is critical both for planning and evaluating these initiatives. While considerable research assesses the value of restoration through economic metrics focusing on expenditures or preferences for ecosystem services, these metrics may not adequately account for the sociocultural services that ecosystems provide communities, such as mental and physical health or recreational opportunities. To address this challenge, we explored the use of social media data to assess online discourse communities’ opinions about ecosystem services through a case study of Twitter mentions of sites targeted for restoration through the Great Lakes Restoration Initiative (GLRI). While there is evidence of the economic and ecological benefits of GLRI, little is known about how these benefits at sites targeted for funding are perceived by the public. From April through October 2019, we collected 40,000 tweets that mentioned an Area of Concern or a Great Lakes National Park that received GLRI funding. We used a mixed-methodological approach combining tweet content and sentiment analysis to determine themes of discussion and characterize online discourse communities’ opinions around these topics. Half of all tweets were about one of three Areas of Concern, and recreation was the most discussed theme with an overall positive sentiment. A metric accounting for the number of tweets and the sentiment of tweets was derived to understand community opinions of restoration at these areas. Our findings demonstrate the potential of social media data mining as a tool for examining online conversations about and engagement with the Great Lakes.  相似文献   

20.
Renibacterium salmoninarum (RS), the causative agent of bacterial kidney disease, has been a serious threat to salmonid health in the Laurentian Great Lakes. Despite its wide spread presence in the Great Lakes basin, little is known about RS ecology and the potential role of non-salmonid species as one of the pathogen’s reservoirs. This information is of paramount importance to fishery managers in order to better understand RS distribution in the different biotic components of the Great Lakes watershed. In this study, non-salmonid species from lakes Michigan and Huron, and from 13 inland waters of the Great Lakes watershed were collected from 1999 to 2008. Out of 380 fish sampled from lakes Michigan and Huron, 42 (11.05%) tested positive for RS as determined by the nested polymerase chain reaction. Prevalence was lower in Lake Huron (5.71%) compared to Michigan (20.74%), but the difference was not statistically significant. Prevalence of RS was not found to be significantly different between species or sites; however, when species were grouped into demersal vs. pelagic categories, significant differences (P < 0.01) in prevalence were observed. Out of 607 fish sampled from inland waters, 111 (18.28%) tested positive for RS as determined by the sandwich enzyme-linked immunosorbent assay. Infection prevalence was highly variable across species and among localities. Our results indicate that many non-salmonid species can harbor this bacterium without progression to disease and may become a reservoir for infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号