首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binational Great Lakes Water Quality Agreement (GLWQA) revised Lake Erie’s phosphorus (P) loading targets, including a 40% western and central basin total P (TP) load reduction from 2008 levels. Because the Detroit and Maumee River loads are roughly equal and contribute almost 90% of the TP load to the western basin and 54% to the whole lake, they have drawn significant policy attention. The Maumee is the primary driver of western basin harmful algal blooms, and the Detroit and Maumee rivers are key drivers of central basin hypoxia and overall western and central basin eutrophication. So, accurate estimates of those loads are particularly important. While daily measurements constrain Maumee load estimates, complex flows near the Detroit River mouth, along with varying Lake Erie water levels and corresponding back flows, make measurements there a questionable representation of loading conditions. Because of this, the Detroit River load is generally estimated by adding loads from Lake Huron to those from the watersheds of the St. Clair and Detroit rivers and Lake St. Clair. However, recent research showed the load from Lake Huron has been significantly underestimated. Herein, I compare different load estimates from Lake Huron and the Detroit River, justify revised higher loads from Lake Huron with a historical reconstruction, and discuss the implications for Lake Erie models and loading targets.  相似文献   

2.
Both abiotic and biotic explanations have been proposed to explain recent recurrent nuisance/harmful algal blooms in the western basin and central basin of Lake Erie. We used two long-term (> 10 years) datasets to test (1) whether Lake Erie total phytoplankton biomass and cyanobacterial biomass changed over time and (2) whether phytoplankton abundance was influenced by soluble reactive phosphorus or nitrate loading from agriculturally-dominated tributaries (Maumee and Sandusky rivers). We found that whereas total phytoplankton biomass decreased in Lake Erie's western basin from 1970 to 1987, it increased starting in the mid-1990s. Total phytoplankton and cyanobacterial seasonal (May–October) arithmetic mean wet-weight biomasses each significantly increased with increased water-year total soluble reactive phosphorus load from the Maumee River and the sum of soluble reactive phosphorus load from the Maumee and Sandusky rivers, but not for the Sandusky River alone during 1996–2006. During this same time period, neither total phytoplankton nor cyanobacterial biomass was correlated with nitrate load. Consequently, recently increased tributary soluble reactive phosphorus loads from the Maumee River likely contributed greatly to increased western basin and (central basin) cyanobacterial biomass and more frequent occurrence of harmful algal blooms. Managers thus must incorporate the form of and source location from which nutrients are delivered to lakes into their management plans, rather than solely considering total (both in terms of form and amount) nutrient load to the whole lake. Further, future studies need to address the relative contributions of not only external loads, but also sources of internal loading.  相似文献   

3.
Three separate procedures were used to estimate the sediment oxygen demand (SOD) in the central basin of Lake Erie and were compared with other estimates determined previously and with historical data. First, whole core incubations involved sealing sediment cores at 12°C to ensure no interaction between the overlying water and the atmosphere and monitoring continuously to define the linear disappearance of oxygen. Second, sediment plugs were placed inside flow-through reactors and the influent and effluent concentrations were monitored to obtain steady-state reaction rates. Third, an extensive data set for the central basin of Lake Erie was compiled for input into the diagenetic BRNS model, and the SOD was calculated assuming all primary redox reactions, but no secondary reactions. All three procedures produced estimates of SOD that were in reasonable agreement with each other. Whole core incubations yield an average SOD of 7.40 × 10−12 moles/cm2/sec, the flow-through experiments had an average SOD of 4.04 × 10−12 moles/cm2/sec, and the BRNS model predicts an SOD of 7.87 × 10−12 moles/cm2/sec over the top 10 cm of sediment and appears to be calibrated reasonably well to the conditions of the central basin of Lake Erie. These values compare reasonably well with the 8.29 × 10−12 moles/cm2/sec obtained from diffusion modeling of oxygen profiles (Matisoff and Neeson 2005). In contrast, values reported from the 1960s to 1980s ranged from 10.5–32.1 × 10−12 moles/cm2/sec suggesting that the SOD of the central basin has decreased over the last 35 years, presumably, in response to the decrease in phosphorus loadings to Lake Erie. However, since hypoxia in the hypolimnion persists these results suggest that improvement in hypolimnetic oxygen concentrations may lag decreases in loadings or that the hypolimnion in the central basin of Lake Erie is simply too thin to avoid summer hypoxia during most years.  相似文献   

4.
Hypoxia and cyanobacterial blooms were extensive in Lake Simcoe during the 1980s and are still a problem to a lesser degree despite extensive nutrient load reduction from the catchment basin. The continuing signs of productivity indicate a potential internal phosphorus (P) source. Internal P load, as a redox-dependent release from bottom sediments, is hard to determine in a large, relatively shallow and partially unstratified lake such as Lake Simcoe. Of the lake's three major basins, only Kempenfelt Bay stratifies long enough to develop hypoxia in the stagnant summer hypolimnion. The following indications of sediment P release are available from historic data: 1) hypolimnetic hypoxia still occurs in Kempenfelt Bay although the hypoxic factor (number of days that an area equal to the bay's surface area is overlain by water of ≤ 2 mg/L dissolved oxygen, DO) has decreased substantially and significantly from 15.8 d/yr (1980–1994) to 4.0 d/yr (1995–2011); 2) hypoxic factors for other lake sections and at different DO levels also indicate widespread hypoxia; 3) concentrations of redox dependent metals, Fe and Mn, increase with depth; and 4) euphotic zone P and chlorophyll concentrations increase and water clarity decreases during fall turnover. Cyanobacterial blooms appear to occur in response to internal load as supported by occasional cyanobacteria counts. These indicators provide evidence that internal loading is likely occurring and affecting the water quality in Lake Simcoe. We expect that further monitoring, specific for internal load, will corroborate these results.  相似文献   

5.
The Great Lakes Water Quality Agreement (GLWQA) established new Lake Erie phosphorus loading targets, including a 40% total phosphorus load reduction to its western and central basins. The Detroit and Maumee rivers’ loads are roughly equal and contribute about 90% of the load to the western basin and 54% to the whole lake. They are key drivers of central basin hypoxia and western basin algal production. So, accurate estimates of the Detroit River load are important. Direct measurement of that load near its mouth is difficult due to requiring real-time knowledge of flows around islands and the influence of Lake Erie’s seiches. Consequently, most estimates sum the loads to the St. Clair/Detroit River system. But this approach is complicated by uncertainties in the Lake Huron load and load retention in Lake St. Clair. Routine GLWQA reassessments will confirm or adjust over time the goals, loading targets, and approaches based on evolving information. So, there is a need to improve monitoring approaches that ensure accurate Detroit River loads. New approaches should take into account both the characteristics of this dynamic connecting channel and the uses of monitoring results: 1) determining the Detroit River loads to drive models, develop mass balances, set load reduction targets, and track progress; and 2) assessing the sources and processing of the loads to help guide reduction strategies. Herein, we review temporal and spatial variability in the St. Clair/Detroit River system, and suggest adjustments to monitoring that address those variabilities and both uses.  相似文献   

6.
Lake Erie has experienced multiple anthropogenic-driven changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. The benthos of Lake Erie has been studied infrequently over nine decades and can provide not only insights into the impact of environmental changes but can also be used to examine ecosystem recovery through time. We used multivariate analyses to examine temporal changes in community composition and to assess the major drivers of long-term changes in benthos. Eutrophication, water quality improvement, and dreissenid introduction were the major drivers of changes in benthos in the western basin, while hypoxia was a major factor in the central basin, and dreissenid introduction was most important in the eastern basin. Non-dreissenid community composition of the western basin has changed dramatically over 90 years from benthic species indicative of good water quality in the 1930s, with a diverse community dominated by Hexagenia, to one of low diversity dominated by oligochaetes and other pollution-tolerant species in the 1960s, followed by recovery in the early 2000s to a state similar to that reported in 1930. In contrast, the non-dreissenid benthic community of the central basin over 60 years was consistently dominated by low oxygen-tolerant taxa, signifying the persistence of hypoxia, the major community driver in this basin. The eastern basin community also changed dramatically, including the disappearance of Diporeia after the introduction of Dreissena in the 1990s and more recent declines in oligochaetes, amphipods, gastropods, sphaeriid clams, and leeches.  相似文献   

7.
As a result of increased harmful algal blooms and hypoxia in Lake Erie, the US and Canada revised their phosphorus loading targets under the 2012 Great Lakes Water Quality Agreement. The focus of this paper is the Detroit River and its watershed, a source of 25% of the total phosphorus (TP) load to Lake Erie. Its load declined 37% since 1998, due chiefly to improvements at the regional Great Lakes Water Authority Water Resource Recovery Facility (WRRF) in Detroit and phosphorus sequestered by zebra and quagga mussels in Lake Huron. In addition to the 54% of the load from Lake Huron, nonpoint sources contribute 57% of the TP load and 50% of the dissolved reactive phosphorus load, with the remaining balance from point sources. After Lake Huron, the largest source is the WRRF, which has already reduced its load by over 40%. Currently, loads from Lake Huron and further reductions from the WRRF are not part of the reduction strategy, therefore remaining watershed sources will need to decline by 72% to meet the Water Quality Agreement target - a daunting challenge. Because other urban sources are very small, most of the reduction would have to come from agriculturally-dominated lands. The most effective way to reduce those loads is to apply combinations of practices like cover crops, buffer strips, wetlands, and applying fertilizer below the soil surface on the lands with the highest phosphorus losses. However, our simulations suggest even extensive conservation on those lands may not be enough.  相似文献   

8.
Current research has shown that reductions in nonpoint nutrient loading are needed to reduce the incidence of harmful algal blooms and hypoxia in the western and central basins of Lake Erie. We used the Soil and Water Assessment Tool (SWAT) to test various sediment and nutrient load reduction strategies, including agricultural best management practice (BMP) implementation and source reduction in various combinations for six watersheds. These watersheds, in order of decreasing phosphorus loads, include the Maumee, Sandusky, Cuyahoga, Raisin, Grand, and Huron, and together comprise 53% of the binational Lake Erie Basin area. Hypothetical pristine nutrient yields, after eliminating all anthropogenic influences, were estimated to be an order of magnitude lower than current yields, underscoring the need for stronger management actions. However, cover crops, filter strips, and no-till BMPs, when implemented at levels considered feasible, were minimally effective, reducing sediment and nutrient yields by only 0–11% relative to current values. Sediment yield reduction was greater than nutrient yield reduction, and the greatest reduction was found when all three BMPs were implemented simultaneously. When BMPs were targeted at specific locations rather than at random, greater reduction in nutrient yields was achieved with BMPs placed in high source locations, whereas reduction in sediment yields was greatest when BMPs were located near the river outlet. Modest nutrient source reduction also was minimally effective in reducing yields. Our model results indicate that an “all-of-above” strategy is needed to substantially reduce nutrient yields and that BMPs should be much more widely implemented.  相似文献   

9.
The Maumee River is an important source of phosphorus (P) loading to western Lake Erie and potentially a source of Microcystis seed colonies contributing to the development of harmful algal blooms in the lake. Herein, we quantified P forms and size fractions, and phytoplankton community composition in the river–lake coupled ecosystem before (June), during (August), and after (September) a large Microcystis bloom in 2009. Additionally, we determined the distribution and density of a newly emergent cyanobacterium, Lyngbya wollei, near Maumee Bay to estimate potential P sequestration. In June, dissolved organic phosphorus (DOP) was the most abundant P form whereas particulate P (partP) was most abundant in August and September. Green algae dominated in June (44% and 60% of total chlorophyll in river and lake, respectively) with substantial Microcystis (17%) present only in the river. Conversely, in August, Microcystis declined in the river (3%) but dominated (32%) the lake. Lake phytoplankton sequestered < 6% of water column P even during peak Microcystis blooms; in all lake samples < 112 μm non-algal particles dominated partP. Lyngbya density averaged 19.4 g dry wt/m2, with average Lyngbya P content of 15% (to 75% maximum) of water column P. The presence of Microcystis in the river before appearing in the lake indicates that the river is a potential source of Microcystis seed colonies for later lake blooms, that DOP is an important component of early summer total P, and that L. wollei blooms have the potential to increase P retention in nearshore areas.  相似文献   

10.
After a period of improvement from the late 1970s through the mid 1990s, western Lake Erie has returned to eutrophic conditions and harmful algal blooms now dominated by the cyanobacterium Microcystis aeruginosa. The detection of long-term trends in Microcystis blooms would benefit from a convenient method for quantifying Microcystis using archived plankton tows. From 2002 to 2011, summer Microcystis blooms in western Lake Erie were quantified using plankton tows (N = 649). A flotation separation method was devised to quantify Microcystis biovolume in the tows, and the method was tested against whole water cell counts. Floating Microcystis biovolume (mL) in preserved tows was highly correlated with total Microcystis cells (R2 = 0.84) and biomass (R2 = 0.95) in whole water samples. We found that Microcystis annual biovolume was highly variable among years; the 2011 bloom was 2.4 times greater than the second largest bloom (2008) and 29.0 times greater than the smallest bloom (2002). Advantages of the method include use of archived samples, high sampling volume, and low effort and expense. Limitations include specificity for cyanobacterial blooms dominated by large Microcystis colonies and the need for site-specific validation. This study indicates that the flotation method can be used to rapidly assess past and present Microcystis in western Lake Erie and that there was high variability in the timing, duration, and intensity of the annual Microcystis blooms over a 10-year period. The data made possible by this method will aid further investigations into the underlying causal factors of blooms.  相似文献   

11.
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant (p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron.  相似文献   

12.
The western Lake Erie basin has been experiencing increasing dissolved reactive phosphorus (DRP) loads since approximately 1994, the causes of which are not well understood. Changing agricultural practices such as no-till agriculture and tile drainage are certain to have an effect on DRP loads. This study examines glyphosate as a potential driver of the observed increase in the western Lake Erie basin DRP loads since 1994 by examining adoption of herbicide-tolerant crops, glyphosate use, and both DRP loads and concentrations from the mid-1990’s to the present. Glyphosate’s widespread usage contributes to DRP loadings and eutrophication in the western Lake Erie basin.  相似文献   

13.
A linked 1-dimensional thermal-dissolved oxygen model was developed and applied in the central basin of Lake Erie. The model was used to quantify the relative contribution of meteorological forcings versus the decomposition of hypolimnetic organic carbon on dissolved oxygen. The model computes daily vertical profiles of temperature, mixing, and dissolved oxygen for the period 1987–2005. Model calibration resulted in good agreement with observations of the thermal structure and oxygen concentrations throughout the period of study. The only calibration parameter, water column oxygen demand (WCOD), varied significantly across years. No significant relationships were found between these rates and the thermal properties; however, there was a significant correlation with soluble reactive phosphorus loading. These results indicate that climate variability alone, expressed as changes in thermal structure, does not account for the inter-annual variation in hypoxia. Rather, variation in the production of organic matter is a dominant driver, and this appears to have been responsive to changes in phosphorus loads.  相似文献   

14.
The total phosphorus data from 1968 to 1982 in the Lake Erie central basin trend study area was analyzed to determine in-lake responses to the Great Lakes Water Quality Agreement (GLWQA) phosphorus loading reduction program. The available data for each year were divided into five subsets according to time of year and depth of the water column. Each data subset was regressed as a function of time and total phosphorus loadings to Lake Erie. Linear regression analysis indicates that the in-lake phosphorus concentrations have been decreasing and are well correlated with decreased loadings to the lake. The highest rate of phosphorus decrease with time (0.56 ± 0.10 mg · m−3 yr−1) was obtained by using epilimnetic concentrations from April to December for each year. This data subset also shows the best correlation with decreasing phosphorus loadings. From 1968 to 1982, Lake Erie offshore phosphorus concentrations responded to decreasing external phosphorus loadings at a rate of 0.45 ± 0.09 mg · m−3 per thousand metric tonnes.  相似文献   

15.
Lake Erie experiences annual summer cyanobacterial harmful algal blooms (HABs), comprised mostly of non-nitrogen-fixing Microcystis, due to excess nitrogen (N) and phosphorus (P) inputs (eutrophication). Lake Erie's watershed is mostly agricultural, and fertilizers, manure, and drainage practices contribute to high nutrient loads. This study aimed to clarify the role of western Lake Erie sediments in either exacerbating or mitigating conditions that fuel HABs via recycling and/or removal, respectively, of excess N and reactive P. Sediment-water interface N and orthophosphate (ortho-P) dynamics and functional gene analyses of key N transformations were evaluated during a dry, low HAB year (2016) and a wet, high HAB year (2017). On average, western basin sediments were a net N sink and thus perform a valuable ecosystem service via N removal. However, sediments were a source of ortho-P and chemically reduced N. Western basin sediments can theoretically remove 29% of average annual watershed total N loading. Denitrification rates were lower during the high (2017) versus low bloom year (2016), suggesting that high external N loading and large HABs inhibit the capacity of sediments to perform that ecosystem service. Despite being a net N sink on average, western basin sediments released ammonium and urea, chemically reduced N forms that are energetically conducive to non-N-fixing, toxin-producing cyanobacterial HABs, especially during the critical period of low external loading and high biomass. These results support other recent work highlighting the urgent need to include N cycling and internal load dynamics in ecosystem models and mitigation efforts for eutrophic systems.  相似文献   

16.
Ornithogenic nutrients derived from waterbirds such as the double-crested cormorant (Phalacrocorax auritus, Lesson) have been linked to habitat change within nesting colonies. For the islands of Lake Erie, where increasing cormorant populations and subsequent habitat change have spurred management activity, estimates of the quantity and chemical characteristics of avian-derived contributions are lacking. To evaluate the quantity and chemical characteristics of ornithogenic litterfall beneath a double-crested cormorant colony on a western Lake Erie island we investigated the mass of material and nutrient composition (PO43 −, NO3 and NH4+) reaching the forest floor under three nest densities (Low: 1–96 nests ha− 1; Medium: 97–255 nests ha− 1 and High: > 255 nests ha− 1). As expected, litterfall (total mass) input differed among nest densities with the most substantial input (225.05 g/m2 week− 1) measured under High nest density conditions. Nutrient concentrations also showed increases with nest density to a point, where mean PO43 − and NH4+ concentrations showed no differences between Medium and High nest density sites. As well, NO3 concentrations were highest under Medium density, with no differences in this nutrient observed between Low and High density. Collectively, litterfall nutrient composition was similar to those linked to habitat changes in other waterbird colonies. Similarities in the concentrations of several nutrients between Medium and High nest density categories suggest that management actions aimed at reducing allochthonous nutrient contributions should try to sustain nest density at or below 96 nests ha− 1.  相似文献   

17.
A summary of a special workshop held at the Canada Centre for Inland Waters, Burlington, Ontario, 2–3 December 1981, is presented. The purpose of the workshop was to air some differences of opinion regarding the response of the hypolimnetic anoxia of Lake Erie to phosphorus controls. The workshop confirmed the validity of the 1978 U.S.-Canadian Great Lakes Water Quality Agreement's goals on restoring year-round aerobic conditions in the hypolimnion of the central basin of Lake Erie through phosphorus loading reduction. The author served as workshop chairman and convenor.  相似文献   

18.
Lake Erie western basin (WB) cyanobacterial blooms are a yearly summer occurrence; however, blooms have also been reported in the offshore waters of the central basin (CB), and very little is known about what drives these blooms or their potential for cyanobacterial toxins. Cyanobacteria Index was quantified using MODIS and MERIS data for the CB between 2003 and 2017, and water samples were collected between 2013 and 2017. The goals were to 1) quantify cyanobacteria, 2) determine environmental drivers of CB blooms, and 3) determine the potential for cyanobacterial toxins in the CB. Dolichospermum (Anabaena) occurred in the CB during July before the onset of the WB bloom, and then in August and September, the cyanobacteria community shifted towards Microcystis. The largest Dolichospermum blooms (2003, 2012, 2013, and 2015) were associated with reduced water clarity (Secchi disk depth?<?4?m), whereas large CB Microcystis blooms (2011 and 2015) were associated with large WB blooms. Dolichospermum blooms occurred in high nitrate concentrations (>20?μmol/L) and high nitrogen-to?phosphorus ratios (>100), which indicate nutrient concentrations or ratios did not select for Dolichospermum. Additionally, the sxtA gene, but not mcyE or microcystins, were detected in the CB during July 2016 and 2017. The mcyE gene and microcystins were detected in the CB during August 2016 and 2017. The results indicate the CB's potential for cyanotoxins shifts from saxitoxins to microcystins throughout the summer. Continued monitoring of cyanobacteria and multiple cyanobacterial toxins is recommended to ensure safe drinking water for CB coastal communities.  相似文献   

19.
For Lake Erie, it is already time to revise the phosphorus target loads set to address the problem of cyanobacterial blooms in the Western Basin. Current targets were proposed by the Annex 4 task group in 2015, adopted by U.S. and Canadian governments in 2016, and set as objectives of domestic action plans in 2017. These targets, applicable to all spring discharges below the 90th percentile, set a maximum load for both total phosphorus (TP) and dissolved reactive phosphorus (DRP) equivalent to 60% of their 2008 spring loads. This essentially mandates 40% reductions in both particulate phosphorus (PP) and DRP loading relative to 2008 loads. These targets do not explicitly incorporate the difference in bioavailability between DRP (~100% bioavailable) and PP (~25% bioavailable). From 2008 to 2017, DRP comprised 24% of the spring TP load and over half (~56%) of the total bioavailable phosphorus (TBAP) load, while PP comprised 76% of the TP load but only ~44% of the TBAP load. Subsequent deposition of PP in the estuarine and nearshore zones further reduces its significance in bloom development. By ignoring differences in bioavailability, the current targets provide no guidance for choosing among practices based on their relative effectiveness in reducing DRP or PP and their combined reductions in TBAP loading. Current targets place more emphasis on PP than needed to efficiently reach targeted cyanobacterial bloom reductions. To clarify appropriate management approaches and lead to greater success in reducing cyanobacterial blooms, target loads should be based on TBAP.  相似文献   

20.
It is well documented that the introduction of dreissenid bivalves in eutrophic lakes is usually associated with decreases in turbidity and total phosphorus concentrations in the water column, concomitant increases in water clarity, as well as other physical changes to habitat that may have cascading effects on other species in the invaded waterbody. In contrast, there is a paucity of data on the ecological ramifications of the elimination or decline of dreissenids due to pollution, bottom hypoxia, or other mechanisms. Using data collected by the U.S. Environmental Protection Agency Great Lakes National Program Office's Long-Term Biology and Water Quality Monitoring Programs, we analyzed the impacts of the hypoxia-induced declines in Dreissena densities in the central basin of Lake Erie on major water chemistry and physical parameters. Our analysis revealed that the decline in Dreissena density in the central basin was concomitant with a decrease in spring dissolved silica concentrations and an increase in total phosphorus and near bottom turbidity not seen in the western or eastern basins. In contrast, opposite patterns in water quality were observed in the eastern basin which was characterized by a high and relatively stable Dreissena population. We are the first to report on observations suggesting that dreissenid-related shifts in water quality may be reversible by documenting that the sharp decline of Dreissena in the central basin of Lake Erie was concomitant with a shift from clear to turbid water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号