共查询到20条相似文献,搜索用时 15 毫秒
1.
Daniel K. Rucinski Dmitry Beletsky Joseph V. DePinto David J. Schwab Donald Scavia 《Journal of Great Lakes research》2010
A linked 1-dimensional thermal-dissolved oxygen model was developed and applied in the central basin of Lake Erie. The model was used to quantify the relative contribution of meteorological forcings versus the decomposition of hypolimnetic organic carbon on dissolved oxygen. The model computes daily vertical profiles of temperature, mixing, and dissolved oxygen for the period 1987–2005. Model calibration resulted in good agreement with observations of the thermal structure and oxygen concentrations throughout the period of study. The only calibration parameter, water column oxygen demand (WCOD), varied significantly across years. No significant relationships were found between these rates and the thermal properties; however, there was a significant correlation with soluble reactive phosphorus loading. These results indicate that climate variability alone, expressed as changes in thermal structure, does not account for the inter-annual variation in hypoxia. Rather, variation in the production of organic matter is a dominant driver, and this appears to have been responsive to changes in phosphorus loads. 相似文献
2.
The purpose of this paper is to show how a high-resolution numerical circulation model of Lake Erie can be used to gain insight into the spatial and temporal variability of phosphorus (and by inference, other components of the lower food web) in the lake. The computer model simulates the detailed spatial and temporal distribution of total phosphorus in Lake Erie during 1994 based on tributary and atmospheric loading, hydrodynamic transport, and basin-dependent net apparent settling. Phosphorus loads to the lake in 1994 were relatively low, about 30% lower than the average loads for the past 30 years. Results of the model simulations are presented in terms of maps of 1) annually averaged phosphorus concentration, 2) temporal variability of phosphorus concentration, and 3) relative contribution of annual phosphorus load from specific tributaries. Model results illustrate that significant nearshore to offshore gradients occur in the vicinity of tributary mouths and their along-shore plumes. For instance, the annually averaged phosphorus concentration can vary by a factor of 10 from one end of the lake to the other. Phosphorus levels at some points in the lake can change by a factor of 10 in a matter of hours. Variance in phosphorus levels is up to 100 times higher near major tributary mouths than it is in offshore waters. The model is also used to estimate the spatial distribution of phosphorus variability and to produce maps of the relative contribution of individual tributaries to the annual average concentration at each point in the lake. 相似文献
3.
Three separate procedures were used to estimate the sediment oxygen demand (SOD) in the central basin of Lake Erie and were compared with other estimates determined previously and with historical data. First, whole core incubations involved sealing sediment cores at 12°C to ensure no interaction between the overlying water and the atmosphere and monitoring continuously to define the linear disappearance of oxygen. Second, sediment plugs were placed inside flow-through reactors and the influent and effluent concentrations were monitored to obtain steady-state reaction rates. Third, an extensive data set for the central basin of Lake Erie was compiled for input into the diagenetic BRNS model, and the SOD was calculated assuming all primary redox reactions, but no secondary reactions. All three procedures produced estimates of SOD that were in reasonable agreement with each other. Whole core incubations yield an average SOD of 7.40 × 10−12 moles/cm2/sec, the flow-through experiments had an average SOD of 4.04 × 10−12 moles/cm2/sec, and the BRNS model predicts an SOD of 7.87 × 10−12 moles/cm2/sec over the top 10 cm of sediment and appears to be calibrated reasonably well to the conditions of the central basin of Lake Erie. These values compare reasonably well with the 8.29 × 10−12 moles/cm2/sec obtained from diffusion modeling of oxygen profiles (Matisoff and Neeson 2005). In contrast, values reported from the 1960s to 1980s ranged from 10.5–32.1 × 10−12 moles/cm2/sec suggesting that the SOD of the central basin has decreased over the last 35 years, presumably, in response to the decrease in phosphorus loadings to Lake Erie. However, since hypoxia in the hypolimnion persists these results suggest that improvement in hypolimnetic oxygen concentrations may lag decreases in loadings or that the hypolimnion in the central basin of Lake Erie is simply too thin to avoid summer hypoxia during most years. 相似文献
4.
Robyn S. Wilson Margaret A. Beetstra Jeffrey M. Reutter Gail Hesse Kristen M. DeVanna Fussell Laura T. Johnson Kevin W. King Gregory A. LaBarge Jay F. Martin Christopher Winslow 《Journal of Great Lakes research》2019,45(1):4-11
Harmful Algal Blooms (HABs), which were largely absent from Lake Erie from the 1980s until the mid-late 1990s, have been growing steadily worse in intensity. While much of the phosphorus loading into the lake prior to 1972 was caused by point-source pollution, approximately 88% to 93% of current loading comes from nonpoint sources, of which agriculture is the dominant land use. A reduction target of 860?metric?tons, or 40% of the total phosphorus spring loading in 2008, has been set with the expectation that such a reduction could limit the size and associated impact of HABs in 9 out of every 10?years. We review the effectiveness of recommended practices aimed at reducing phosphorus loss in agriculture and pair this knowledge with behavioral data on likely adoption to identify how best to achieve the reduction target. The data suggests that the target is feasible as a majority of the farming population is willing to consider many of the recommended practices. However, increases in adoption over time have been minimal, and farmers will need better cost-benefit information, site-specific decision support tools, and technical assistance in order to more rapidly adopt and execute the placement of recommended practices. A combination of voluntary and mandatory approaches may be needed, but policies and programs promoting voluntary adoption should be designed to better target known barriers and maximize voluntary program effectiveness. 相似文献
5.
Reza Valipour Luis F. León Todd Howell Alice Dove Yerubandi R. Rao 《Journal of Great Lakes research》2021,47(2):419-436
We investigate the nearshore-offshore exchange of hypoxic waters during episodic coastal upwelling events in the nearshore waters of northern Lake Erie using intensive field observations and a validated hydrodynamic and water quality model. We observe wind-induced coastal upwelling events to be the dominant nearshore physical process in the lake which are energized every 5–10 days. When the winds were predominantly blowing from the west or south-west, epilimnetic waters were transported to the offshore bringing in hypolimnetic waters with low temperature (8–10 °C), dissolved oxygen (DO: 0–6 mg L?1) and pH (6–7) to the nearshore zones. During these events, vertical diffusivity coefficients decreased from 10?2 m2 s?1 to values as low as ~ 10?7 m2 s?1. In late summer, the coastal upwelling events in the nearshore waters lower the near bottom DO to hypoxic levels (DO < 2 mg L?1). Lake-wide observations of DO and pH show that they are positively and linearly correlated while in the nearshore DO and pH experience spatial and temporal variability where upwelling events were developed, which were further assessed using a three-dimensional model. The model accuracy to reproduce offshore hypoxia was first assessed on a lake-wide basis using a coarse resolution model for a five-year period (2008–2012) and in nearshore waters using a higher resolution model for 2013. We use the model results to delineate the near bottom areas experiencing hypoxia at time scales longer than 48 h. 相似文献
6.
A.F. Choquette R.M. Hirsch J.C. Murphy L.T. Johnson R.B. Confesor 《Journal of Great Lakes research》2019,45(1):21-39
Tracking changes in stream nutrient inputs to Lake Erie over multidecadal time scales depends on the use of statistical methods that can remove the influence of year-to-year variability of streamflow but also explicitly consider the influence of long-term trends in streamflow. The methods introduced in this paper include an extended version of Weighted Regressions on Time, Discharge, and Season (WRTDS) modeling that explicitly considers nonstationary streamflow by incorporating information on changes in the frequency distribution of daily measured streamflow (discharge) over time. Soluble reactive phosphorus (SRP) trends in annual flow-normalized fluxes (loads) at five long-term monitoring sites in the western Lake Erie drainage basin show increases of 109 to 322% over the period 1995 to 2015. About one-third of the increase appears attributable to increasing discharge trends, while the remaining two-thirds appears to be driven by changes in concentration versus discharge relationships reflecting higher concentrations for any given discharge during recent years. Trends in total phosphorus and three nitrogen parameters (total nitrogen, nitrate-nitrite, and total Kjeldahl nitrogen) at the 10 sites analyzed were much less pronounced, and commonly show decreases in concentration-discharge relationships accompanied by increases in discharge, resulting in little net change in total flux. Trends in monthly SRP fluxes and discharge, dissolved versus particulate fractions of nutrients, and N:P flux ratios were also evaluated. The methods described here provide tools to more clearly discern the effectiveness of nutrient-control strategies and can serve as ongoing measures of progress, or lack of progress, towards nutrient-reduction goals. 相似文献
7.
The tubenose goby (Proterorhinus semilunaris), native to the Ponto-Caspian region, was first discovered in the Laurentian Great Lakes in 1990 after it was introduced through ballast water discharge. Compared with Neogobius melanostomus, another exotic gobiid from the Ponto-Caspian, colonization of the Great Lakes by P. semilunaris has been slow, with reports of the species being largely confined to the Huron-Erie Corridor (HEC) and western portions of Lake Erie and Lake Superior. This is the first report of P. semilunaris in the Great Lakes east of the western basin of Lake Erie. Between 28 June and 27 July, 2012, 176 P. semilunaris were collected from shallow (< 1.2 m) water of Marina Lake, a 40 ha embayment in Presque Isle State Park (Erie, PA). The large number of P. semilunaris collected at the site and the presence of individuals as small as 17 mm total length suggest an established population. However, the mechanism by which P. semilunaris was introduced to Presque Isle Bay is not clear. 相似文献
8.
Donna L. Witter Joseph D. Ortiz Sarah Palm Robert T. Heath Judith W. Budd 《Journal of Great Lakes research》2009
The feasibility of satellite-based monitoring of phytoplankton chlorophyll a concentrations in Lake Erie is assessed by applying globally calibrated, ocean-derived color algorithms to spatially and temporally collocated measurements of SeaWiFS remote sensing reflectance. Satellite-based chlorophyll a retrievals were compared with fluorescence-based measurements of chlorophyll a from 68 field samples collected across the lake between 1998 and 2002. Twelve ocean-derived color algorithms, one regional algorithm derived for the Baltic Sea's Case 2 waters, and a set of regional algorithms developed for the western, central and eastern basins of Lake Erie were considered. While none of the ocean-derived algorithms performed adequately, the outlook for the success of regionally calibrated and validated algorithms, with forms similar to the ocean-derived algorithms, is promising over the eastern basin and possibly the central basin of the lake. In the western basin, each of the regional algorithms considered performed poorly, indicating that alternative approaches to algorithm development, or to satellite data screening and analysis procedures will be needed. 相似文献
9.
Rebecca L. North Ralph E.H. Smith Robert E. Hecky David C. Depew Luis F. León Murray N. Charlton Stephanie J. Guildford 《Journal of Great Lakes research》2012
Increased human population growth, reduction of phosphorus (P) loading, and the invasion of dreissenid mussels may have changed the spatial pattern and relationships between the nearshore and the offshore seston and nutrient concentrations in the eastern basin of Lake Erie over the past 30 years. We compared seston characteristics, nutrient concentrations, and phytoplankton nutrient status between nearshore and offshore zones in years before (1973–1985) and after (1990–2003) the dreissenid invasion. In 1973 (the only pre-dreissenid year nearshore data was collected), chlorophyll a (chla) and nutrient concentrations were higher nearshore than offshore. In post-dreissenid years, nearshore chla concentrations became significantly lower than the offshore, while carbon (C):chla ratios became higher, which was related to mussel grazing and possibly photoacclimation. Phosphorus deficiency in the phytoplankton increased over the 30-year period, and in the post-dreissenid years was less acute in the nearshore than offshore. Mean water column irradiance became higher in the nearshore relative to the offshore in the post-dreissenid years. The nutrient changes and phytoplankton physiology were consistent with the expected effects of nutrient cycling by mussels and diminished demand by phytoplankton despite increased demand from benthic algae in the nearshore. This basin-scale study suggests that dreissenid mussel invasion can be associated with alterations in the spatial pattern of water column properties in large lakes even on open coasts with vigorous circulation and exchange. 相似文献
10.
Matthew A. Saxton Nigel A. D'souza Richard A. Bourbonniere Robert Michael L. McKay Steven W. Wilhelm 《Journal of Great Lakes research》2012
Recent investigations of Lake Erie in the winter have demonstrated the occurrence of substantial phytoplankton communities largely consisting of the diatom Aulacoseira islandica (O. Müller) Simonsen. To assess the activity of this diatom community, multiple measures of production, both general and diatom-specific, were undertaken. We measured oxygen (O2) evolution as proxy for carbon (C)-fixation and 2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl) methoxy)-phenyl)oxazole (PDMPO) incorporation as a measure of silica (Si) deposition. The latter demonstrated conclusively that diatoms were active during winter months and confirmed that diatoms are the primary drivers of winter productivity. The stoichiometric relationship between carbon and silica in the winter Lake Erie phytoplankton assemblage was further compared to the activity of the summer community. Although the winter phytoplankton community was observed to be active, it was less active than the summer community, with lower measured rates of O2 evolution and Si deposition. These findings provide a new and expanded understanding of the biological carbon production in Lake Erie. 相似文献
11.
Time series measurements of current velocity, wave action, and water transparency were made at two sites—one in 24 m of water and the other in 53 m—in Lake Erie during the fall and winter of 2004–2005. The observations at the shallow site show that bottom resuspension occurred several times during the deployment. Although local resuspension did not occur at the deeper station, several advection episodes were observed. The storms during the observation period were not unusually large, so the processes observed are probably typical of those that occur on a yearly basis. The observations agree reasonably well with previous estimates for both the bottom shear stress during storms, and for the critical shear stress needed to resuspend bottom sediment, but previous estimates of the particle settling velocity are probably too low, while previous estimates of the sediment entrainment rate are too high. The results show that bottom material in the central basin is reworked numerous times before it is finally buried. Deposition in the eastern basin is a more continuous process, but the events observed were not sufficient to match the long-term accumulation rate, so deposition at this site is probably also due in part to larger, more infrequent storms. 相似文献
12.
Donald Scavia Serghei A. Bocaniov Awoke Dagnew Colleen Long Yu-Chen Wang 《Journal of Great Lakes research》2019,45(1):40-49
To support the 2012 Great Lakes Water Quality Agreement on reducing Lake Erie's phosphorus inputs, we integrated US and Canadian data to update and extend total phosphorus (TP) loads into and out of the St. Clair-Detroit River System for 1998–2016. The most significant changes were decreased loads from Lake Huron caused by mussel-induced oligotrophication of the lake, and decreased loads from upgraded Great Lakes Water Authority sewage treatment facilities in Detroit. By comparing Lake St. Clair inputs and outputs, we demonstrated that on average the lake retains 20% of its TP inputs. We also identified for the first time that loads from resuspended Lake Huron sediment were likely not always detected in US and Canadian monitoring programs due to mismatches in sampling and resuspension event frequencies, substantially underestimating the load. This additional load increased over time due to climate-induced decreases in Lake Huron ice cover and increases in winter storm frequencies. Given this more complete load inventory, we estimated that to reach a 40% reduction in the Detroit River TP load to Lake Erie, accounting for the missed load, point and non-point sources other than that coming from Lake Huron and the atmosphere would have to be reduced by at least 50%. We also discuss the implications of discontinuous monitoring efforts. 相似文献
13.
Heavy metals in sediments and uptake by burrowing mayflies in western Lake Erie basin 总被引:2,自引:0,他引:2
During the past two decades, burrowing Hexagenia mayflies have returned to the western basin of Lake Erie. Because of their importance as a prey resource for higher trophic levels and their extensive residence time in potentially contaminated sediment, Hexagenia may be a source of heavy metal transfer. To better understand the distribution and transfer of heavy metals in sediment and mayflies, sediment and mayfly nymphs were collected from 24 locations across the western basin of Lake Erie in May 2007. Following USEPA protocols, samples were analyzed for 16 elements using ICP-OES or ICP-MS. Metal concentrations in the sediments exceeded the Threshold Effect Level for at least one metal at all sample sites. Sediment heavy metal distribution profiles indicate metal concentrations are correlated with organic matter content, and the highest heavy metal concentrations were found in the central deeper region of the western basin where organic content in the sediments was greatest. Hexagenia were distributed throughout the western basin, with greatest density (1350/m2) within the Detroit River plume. The Cd and Zn levels in mayflies were on average approximately 4 and 2 times greater, respectively, than sediment levels, and the Cd concentrations in the sediments exceeded the Threshold Effect Level at 27 of 28 sites and exceeded the Probable Effect Level at 9 of 28 sites. Spatial representation of heavy metal concentrations in mayflies exhibited a similar pattern to the spatial distribution of heavy metals and organic matter in the sediments with higher concentrations of metals found in mayflies residing in the central deeper region of the western basin. 相似文献
14.
David B. Baker Laura T. Johnson Remegio B. Confesor John P. Crumrine Tian Guo Nathan F. Manning 《Journal of Great Lakes research》2019,45(2):203-211
For Lake Erie, it is already time to revise the phosphorus target loads set to address the problem of cyanobacterial blooms in the Western Basin. Current targets were proposed by the Annex 4 task group in 2015, adopted by U.S. and Canadian governments in 2016, and set as objectives of domestic action plans in 2017. These targets, applicable to all spring discharges below the 90th percentile, set a maximum load for both total phosphorus (TP) and dissolved reactive phosphorus (DRP) equivalent to 60% of their 2008 spring loads. This essentially mandates 40% reductions in both particulate phosphorus (PP) and DRP loading relative to 2008 loads. These targets do not explicitly incorporate the difference in bioavailability between DRP (~100% bioavailable) and PP (~25% bioavailable). From 2008 to 2017, DRP comprised 24% of the spring TP load and over half (~56%) of the total bioavailable phosphorus (TBAP) load, while PP comprised 76% of the TP load but only ~44% of the TBAP load. Subsequent deposition of PP in the estuarine and nearshore zones further reduces its significance in bloom development. By ignoring differences in bioavailability, the current targets provide no guidance for choosing among practices based on their relative effectiveness in reducing DRP or PP and their combined reductions in TBAP loading. Current targets place more emphasis on PP than needed to efficiently reach targeted cyanobacterial bloom reductions. To clarify appropriate management approaches and lead to greater success in reducing cyanobacterial blooms, target loads should be based on TBAP. 相似文献
15.
John H. Hartig Steven N. Francoeur Jan J.H. Ciborowski John E. Gannon Claire E. Sanders Patricia Galvao-Ferreira Collin R. Knauss Gwen Gell Kevin Berk 《Journal of Great Lakes research》2021,47(4):1241-1256
The Canada-U.S. State of the Strait Conference is a biennial forum with a 22-year history of assessing ecosystem status and providing advice to improve research, monitoring, and management of the Detroit River and western Lake Erie. The 2019 conference focused on assessing ecosystem health based on 61 indicators. Although there has been considerable improvement in the Detroit River since the 1960s, much additional cleanup is needed to restore ecosystem health. Western Lake Erie is now at risk of crossing several potential tipping points caused by the interactions of a variety of drivers and their stresses. This assessment identified eight environmental and natural resource challenges: climate change; population growth/transportation expansion/land use changes; chemicals of concern; human health/environmental justice; aquatic invasive species; habitat loss/degradation; nonpoint source pollution; and eutrophication/harmful algal blooms. Specific recommendations for addressing each challenge were also made. Climate change is the most pressing environmental challenge of our time and considered a “threat multiplier” whereby warmer, wetter, and more extreme climatic conditions amplify other threats such as poor air quality effects on vulnerable residents, species changes, and nonpoint source runoff and combined sewer overflow events that contribute to eutrophication and can manifest as harmful algal blooms. Our assessment found that investments in monitoring and evaluation are insufficient and that the region's intellectual and environmental capital is not being leveraged sufficiently to address current challenges. Continued investment in this transnational network is essential to support ecosystem-based management. 相似文献
16.
David M. O'Donnell Steven W. Effler Christopher M. Strait George A. Leshkevich 《Journal of Great Lakes research》2010
In situ measurements of inherent (IOPs) and apparent optical properties (AOPs), along with laboratory measurements of optically active constituents, were made at sites (n = 14) in western Lake Erie following a wind event to advance the characterization of the underwater and emergent light fields of these waters and to support related IOP-based model development and testing. Modern instrumentation was used to make spectral (wavelength, λ) measurements of the IOPs of absorption [a(λ)], particulate scattering [bp(λ)], and particulate backscattering [bbp(λ)] coefficients, and the AOPs of remote sensing reflectance [Rrs(λ)], and the diffuse attenuation coefficient for downwelling irradiance [Kd(λ)]. Optical closure analyses were conducted to demonstrate the credibility of the measurements, by comparing AOP observations to predictions based on radiative transfer expressions that utilized IOP measurements as inputs. Substantial spectral variations in a and its contributing components, and more modest wavelength dependencies for bp and bbp, were documented that are consistent with observations reported for marine case 2 systems. The backscattering ratio, bbp:bp, was strongly positively related to the contribution of minerogenic particles to the overall concentration of suspended particulate material. Major spatial differences in both IOPs and AOPs were observed that were driven by the attendant differences in the concentrations and composition of the optically active constituents, but particularly minerogenic particles, mediated in part by sediment resuspension. Good optical closure between the independently measured IOPs and AOPs was achieved. Direct measurement of bbp(λ) was found to be critical to pursue closure for Rrs(λ) and thereby support related remote sensing initiatives. 相似文献
17.
Maria T. Cioppa Neil J. PorterAlan S. Trenhaile Blessing IgokweJennifer Vickers 《Journal of Great Lakes research》2010
Measurements were made along the northwestern shore of Lake Erie, Canada to determine whether grain magnetic properties can be used to identify and distinguish sources of beach sediment. Although surface magnetic susceptibilities were highly variable, ranging from 56 to 9867 × 10−5 SI (Bartington MS2D), there was generally a gradual increase from the low beach (near the waterline) towards the high beach; there were also narrow, shore-parallel bands with high susceptibility at various points on the beach surface. Magnetic mineralogy on the beaches was dominated by low-Ti magnetite (570° < Tc < 580 °C), and the effective grain-size varied from pseudosingle domain in the low beach to multidomain on the high beach. Sandy bluff sediments in the eastern part of the study area had magnetic properties (e.g. S-ratios, hysteresis loops, thermomagnetic curves) that were similar to those on the beaches, whereas the magnetic properties of the extensive till bluffs and river basin sediments were quite different. The data suggested that, whereas the beaches in the western part of the study area are supplied with sediment from bluffs several tens of kilometres to the east, the source of the high magnetic concentrations on the eroding beaches of eastern Point Pelee remains to be determined. 相似文献
18.
Xinxin Lu Darren L. Bade Laura G. Leff Xiaozhen Mou 《Journal of Great Lakes research》2018,44(3):428-435
Production of dinitrogen gas via microbially mediated anaerobic ammonium oxidation (anammox) and denitrification plays an important role in removal of fixed N from aquatic ecosystems. Here, we investigated anammox and denitrification potentials via the 15N isotope pairing technique in the helium flushed bottom water (~0.2 m above the sediment) of Sandusky Bay, Sandusky Subbasin, and Central Basin in Lake Erie in three consecutive summers (2010?2012). Potential rates of anammox (0–922 nM/day) and denitrification (1 to 355 nM/day) varied greatly among sampling sites during the 3 years we studied. The relative importance of anammox to total N2 production potentially ranged from 0 to 100% and varied temporally and spatially. Our study represents one of the first efforts to measure potential activities of both anammox and denitrification in the water column of Lake Erie and our results indicate the Central Basin of Lake Erie is a hot spot for N removal through anammox and denitrification activities. Further, our data indicate that the water column, specifically hypolimnion, and the surface sediment of the Lake Erie Central Basin are comparatively important for microbially mediated N removal. 相似文献
19.
Concern exists that the introduction of dreissenid mussels following long-term effects of pollution may have completely eliminated native mussel species from Lake Erie. Natural seiche events were used to facilitate surveys for live unionids on five occasions in the western basin of Lake Erie and Sandusky Bay between 2007 and 2009, and beach and estuary surveys were conducted at numerous additional sites between 2004 and 2009. Sixteen unionid species were found living in or near Lake Erie, including six sites in the nearshore zone of the lake. Each community consisted of live individuals from two to eight species, and evidence included live and/or fresh dead material from several state listed species at multiple sites. Where estimated, the mean overall density was low at 0.09 unionids/m2, although similar to other known unionid refuges in the lower Great Lakes. While the ephemeral nature of seiche events makes them a limited survey tool, their application combined with increasing numbers of fresh shells washing ashore over the past few years indicates that unionids are extant in the western basin of Lake Erie, and may further suggest that conditions may be improving for native mussel species. 相似文献
20.
《Journal of Great Lakes research》2023,49(2):422-428
The binational Great Lakes Water Quality Agreement (GLWQA) revised Lake Erie’s phosphorus (P) loading targets, including a 40% western and central basin total P (TP) load reduction from 2008 levels. Because the Detroit and Maumee River loads are roughly equal and contribute almost 90% of the TP load to the western basin and 54% to the whole lake, they have drawn significant policy attention. The Maumee is the primary driver of western basin harmful algal blooms, and the Detroit and Maumee rivers are key drivers of central basin hypoxia and overall western and central basin eutrophication. So, accurate estimates of those loads are particularly important. While daily measurements constrain Maumee load estimates, complex flows near the Detroit River mouth, along with varying Lake Erie water levels and corresponding back flows, make measurements there a questionable representation of loading conditions. Because of this, the Detroit River load is generally estimated by adding loads from Lake Huron to those from the watersheds of the St. Clair and Detroit rivers and Lake St. Clair. However, recent research showed the load from Lake Huron has been significantly underestimated. Herein, I compare different load estimates from Lake Huron and the Detroit River, justify revised higher loads from Lake Huron with a historical reconstruction, and discuss the implications for Lake Erie models and loading targets. 相似文献