首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ~5?nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in(2) memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.  相似文献   

2.
3.
Relaxor ferroelectric perovskites have experienced a revival of interest in recent years accompanying the deeply exploration of the fine local structure of polar nanoregions, which are thought to be the structure root for unique electrical properties. Interestingly, a new type of low-tolerance relaxor ferroelectric, which exhibits both cation displacement and large oxygen octahedral tilt, exhibiting anomalous microdomains were found in NaNbO3-based lead-free perovskites, breaking through the limits of the relaxor ferroelectric models proposed from classical relaxors. Atomic-scale annular bright-field scanning transmission electron microscopy images indicate that the microdomains are formed by long-range ordered oxygen octahedral tilt. At the same time, substructure of randomly embedded nanoregions with inhomogeneous polarization vectors can be mapped, being the main reason for relaxor behavior. Based on this special ferroelectric-improper ferroelastic state, delayed polarization saturation can be obtained under strong electric field, providing an opportunity for generating excellent energy storage properties. The results found in this work not only open up a new kind of relaxor ferroelectrics but also will lead to the reconstruction of relaxor models and theories built for more than half a century.  相似文献   

4.
The negative capacitance (NC) effect in ferroelectric thin films has attracted a great deal of attention from the material and semiconductor device communities because it could be a possible solution to the impending problems related to field‐effect transistor power consumption and dynamic random‐access memory charge loss. A short discussion on the fundamental premise of the NC effect is presented. A phase‐field model based on the time‐dependent Ginzburg–Landau (TDGL) formalism in conjunction with the Chensky–Tarasenko (C–T) formalism for multidomain configuration is then developed to reveal the subtle correlation between the domain wall motion and NC effect for different thicknesses of ferroelectric and dielectric films. When a ferroelectric film becomes thin enough, a stripe domain structure can be achieved through competition between the electrostatic energy and domain wall energy. This stripe domain structure is quite resilient to transition to a homogeneous polarization state, making it very useful for (quasi‐)static NC operation. Finally, the physical implications of the numerical results are explored with analytical modeling. It is identified that the domain wall motion in the stripe domain structure remains dominated by the external field, even when the entire film is in the (quasi‐)static NC state.  相似文献   

5.
The origin of ferroelectricity in magnetoelectric YMnO3   总被引:1,自引:0,他引:1  
Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO(3), using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO(5) polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics.  相似文献   

6.
Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low‐temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid–liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.  相似文献   

7.
The reduction of silver from an aqueous solution on BiFeO? surfaces, activated by visible light, was investigated as a function of crystal and ferroelectric domain orientation. When excited by light with energy between 2.53 and 2.70 eV, BiFeO? photochemically reduces silver cations from solution in patterns corresponding to the underlying ferroelectric domain structure. Silver is preferentially reduced on domains with a positive polarization directed toward the surface. The amount of reduced silver depends on whether the component of the domain polarization normal to the surface is positive or negative, but is relatively insensitive to the crystal orientation. It is concluded that the ferroelectric polarization decreases electron drift to the surface in domains with a negative polarization, causing spatially selective photochemical behavior, and that the direction of the polarization is more important than the amplitude.  相似文献   

8.
The formation of domain configuration in ferroelectrics is a consequence of energy minimization, and critically depends on their transformation strain and spontaneous polarization. In this article, we develop an energetic analysis on ferroelectric domain patterns using equivalent inclusion method, treating ferroelectric domain as an ellipsoidal inhomogeneous inclusion in a ferroelectric matrix. The potential energy of the domain is calculated in terms of its orientation and shape, and the energy minimizing configurations have been identified. Both tetragonal and rhombohedral crystals have been analyzed, and the lamellar domain configurations as predicted by the compatibility analysis have been recovered. Additional energy minimizing states have also been revealed, including needle type of domains and charged domains. Different contributions of strain compatibility and polarization compatibility have also been analyzed.  相似文献   

9.
Defects in ferroelectric materials have many implications on the material properties which, in most cases, are detrimental. However, engineering these defects can also create opportunities for property enhancement as well as for tailoring novel functionalities. To purposely manipulate these defects, a thorough knowledge of their spatial atomic arrangement, as well as elastic and electrostatic interactions with the surrounding lattice, is highly crucial. In this work, analytical scanning transmission electron microscopy (STEM) is used to reveal a diverse range of multidimensional crystalline defects (point, line, planar, and secondary phase) in (K,Na)NbO3 (KNN) ferroelectric thin films. The atomic-scale analyses of the defect-lattice interactions suggest strong elastic and electrostatic couplings which vary among the individual defects and correspondingly affect the electric polarization. In particular, the observed polarization orientations are correlated with lattice relaxations as well as strain gradients and can strongly impact the properties of the ferroelectric films. The knowledge and understanding obtained in this study open a new avenue for the improvement of properties as well as the discovery of defect-based functionalities in alkali niobate thin films.  相似文献   

10.
The band bending at Cu/PZT(001) interfaces is investigated by X-ray photoelectron spectroscopy (XPS) for a PZT(001) layer which exhibits initial outwards ferroelectric polarization. Two competitive processes are identified: (a) formation of the Schottky barrier between the ferroelectric and unconnected Cu islands, and (b) coalescence of the Cu islands, realisation of an electrical contact to the ground of the system, inducing the apparent loss of the component of the ferroelectric polarization perpendicular to the sample surface, at least as it manifests in band bending. Three mechanisms are proposed to explain this loss of band bending when a full metal layer connected to ground is formed on the surface: (i) over-compensation of depolarization field in the sub-surface region, (ii) formation of domains with in-plane orientation of the polarization vector and (iii) loss of polarization in the near-surface layers of the ferroelectric due to electrons provided by the metal. These result in a non-monotonous variation of binding energies with the amount of Cu deposited. High resolution transmission electron microscopy and piezoresponse force microscopy confirmed these hypotheses. The XPS data allowed also to derive the surface PZT composition, its evolution with the deposition of copper and the formation of surface compounds.  相似文献   

11.
Problems associated with the influence of a nonuniform impurity distribution on the properties of ferroelectric water-soluble crystals are studied. Triglycine sulfate crystals with a specially created periodically stratified distribution of chromium impurity ions are used to show that the properties of these crystals (permittivity, spontaneous polarization, pyrocoefficient) differ from those of triglycine sulfate crystals with randomly distributed impurities and also depend on the period of the structure of the inhomogeneous crystals. Pis’ma Zh. Tekh. Fiz. 24, 75–80 (May 12, 1998)  相似文献   

12.
铁电薄膜与底电极之间由于高温扩散而形成了界面层,且观察到其对薄膜电性能的影响类似于硅衬底上铁电薄膜的异质结效应。基于能带理论的考虑,建立物理模型来解释其影响。该界面异质结模型不仅可以解释铁电薄膜的界面分层、电滞回线不对称等现象,而且还成功地解释了电滞回线中心在极化轴上的偏移和疲劳循环过程中的偏移增加,并探讨了这种偏移对铁电薄膜疲劳特性的影响。  相似文献   

13.
We theoretically calculate and plot the spatial distribution of dynamic polarization in a capacitor structure consisting of thin SrTiO3 and BaTiO3 layers that satisfies the zero boundary conditions and investigate the size effect on the capacitance of a ferroelectric bilayer.  相似文献   

14.
We have studied peculiarities of the high-temperature diffusion of arsenic implanted into variable-gap epitaxial CdHgTe layers. The nonmonotonic shape of the diffusion profiles can be explained by the presence of an inhomogeneous internal electric field related to the variable band structure of the epitaxial layers.  相似文献   

15.
将极化处理后充负电荷的聚偏氟乙烯(PVDF)有机铁电聚合物薄膜经溶解,与BaTiO3无机纳米粉体形成良好分散的PVDF-BT荷电阴离子溶液和聚二丙烯基二甲基氯化铵(PDDA)聚阳离子溶液,通过静电作用在石英基片上交替自组装PDDA/PVDF-BT铁电复合超薄膜. 采用石英晶体微天平(QCM)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)对该铁电复合超薄膜进行了表征. 研究结果表明:自组装12层PDDA/PVDF BT铁电复合超薄膜厚度为82nm,且静电自组装过程均匀,复合超薄膜表面平整、致密,无机纳米颗粒规整并均匀地覆盖在石英基底表面. 通过在PDDA/PVDF复合超薄膜间引入BaTiO3无机纳米铁电粉体,可实现对超薄膜内部结构以及膜厚度的控制,极化强度可提高到约3μC/cm2.  相似文献   

16.
We present a model for calculating the angular distribution of light, including polarization effects from multilayered inhomogeneous media, with an index of refraction mismatch between layers. The model is based on the resolution of the radiative transfer equation by the discrete ordinate method. Comparisons with previous simpler models and examples of simulations are presented.  相似文献   

17.
Coupling of magnetic, ferroelectric, or piezoelectric properties with charge transport at oxide interfaces provides the option to revolutionize classical electronics. Here, the modulation of electrostatic potential barriers at tailored ZnO bicrystal interfaces by stress‐induced piezoelectric polarization is reported. Specimen design by epitaxial solid‐state transformation allows for both optimal polarization vector alignment and tailoring of defect states at a semiconductor–semiconductor interface. Both quantities are probed by transmission electron microscopy. Consequently, uniaxial compressive stress affords a complete reduction of the potential barrier height at interfaces with head‐to‐head orientation of the piezoelectric polarization vectors and an increase in potential barrier height at interfaces with tail‐to‐tail orientation. The magnitude of this coupling between mechanical input and electrical transport opens pathways to the design of multifunctional electronic devices like strain triggered transistors, diodes, and stress sensors with feasible applications for human–computer interfacing.  相似文献   

18.
Polarization response to warming plays an increasingly important role in a number of ferroelectric memory devices. This paper reports on the theoretical explanation of the relationship between polarization and temperature. According to the Fermi–Dirac distribution, the basic property of electric polarization response to temperature in magnetoelectric multiferroic materials is theoretically analyzed. The polarization in magnetoelectric multiferroic materials can be calculated by low temperature using a phenomenological theory suggested in this paper. Simulation results revealed that the numerically calculated results are in good agreement with experimental results of some inhomogeneous multiferroic materials. Numerical simulations have been performed to investigate the influences of both electric and magnetic fields on the polarization in magnetoelectric multiferroic materials. Furthermore, polarization behavior of magnetoelectric multiferroic materials can be predicted by low temperature, electric field and magnetic induction using only one function. The calculations offer an insight into the understanding of the effects of heating and magnetoelectric field on electrical properties of multiferroic materials and offer a potential to use similar methods to analyze electrical properties of other memory devices.  相似文献   

19.
We have developed the set of numerical (finite-element) and analytical tools that are based on the self-consistent solution of the electrostatic equations coupled with material Ginzburg–Landau equations with an objective to model the profile of domain textures in the entire temperature region. We calculated the evolution of principal parameters of domain texture: modulation vector, distribution of polarization, renormalization of critical temperature etc. In contrast to the Kittel approximation we conclude that the profile of polarization across domains in nanometric ferroelectric thin films is highly nonuniform.  相似文献   

20.
Self-assembled membranes with periodic wrinkled patterns are the critical building blocks of various flexible electronics, where the wrinkles are usually designed and fabricated to provide distinct functionalities. These membranes are typically metallic and organic materials with good ductility that are tolerant of complex deformation. However, the preparation of oxide membranes, especially those with intricate wrinkle patterns, is challenging due to their inherently strong covalent or ionic bonding, which usually leads to material crazing and brittle fracture. Here, wrinkle-patterned BaTiO3 (BTO)/poly(dimethylsiloxane) membranes with finely controlled parallel, zigzag, and mosaic patterns are prepared. The BTO layers show excellent flexibility and can form well-ordered and periodic wrinkles under compressive in-plane stress. Enhanced piezoelectricity is observed at the sites of peaks and valleys of the wrinkles where the largest strain gradient is generated. Atomistic simulations further reveal that the excellent elasticity and the correlated coupling between polarization and strain/strain gradient are strongly associated with ferroelectric domain switching and continuous dipole rotation. The out-of-plane polarization is primarily generated at compressive regions, while the in-plane polarization dominates at the tensile regions. The wrinkled ferroelectric oxides with differently strained regions and correlated polarization distributions would pave a way toward novel flexible electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号