首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文中采用溶胶-凝胶法制备纳米SiO2粒子,将其整理到棉织物表面构建微纳级粗糙结构,并用3种无氟疏水剂及复合搭配对织物进行修饰,使其具备超疏水性能。采用扫描电子显微镜、X射线衍射分析SiO2粒子晶体形态和整理前后棉织物的化学结构及微观形貌;通过静态水接触角、动态水滑移角评价织物疏水性能,并对织物的耐水冲击和耐洗涤性能进行测试。结果表明,制得的SiO2粒子单分散性良好,直径为200~300 nm。修饰后棉织物静态水接触角度可达130.0°~160.0°,滑移角在7.0°~12.0°,十六烷基三甲氧基硅烷和十二烷基三甲氧基硅烷混合使用整理的棉织物超疏水效果最好,静态接触角为156.2°,滑移角为7.0°,并具备优异的耐洗涤和耐水冲击性能。  相似文献   

2.
《印染》2015,(18)
以正硅酸四乙酯(TEOS)为硅源,γ-氨基丙基三甲氧基硅烷(APTMS)为改性剂,制备氨基改性纳米二氧化硅(A-Si O2)溶胶,利用红外光谱仪对其进行表征,并用于棉织物整理。处理后的棉织物再浸轧低表面能聚二甲基硅氧烷(PDMS),测试其超疏水性。结果表明,处理后的棉织物与水的接触角为153.35°,滚动角为9°;经柠檬酸预处理的棉织物,其耐洗性较好,20次皂洗后与水的接触角仍可达138.25°,滚动角为20°。  相似文献   

3.
《印染》2015,(12)
以正硅酸四乙酯(TEOS)为前驱体,γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPTMS)为改性剂,在催化剂氨水作用下,采用溶胶-凝胶法制得改性纳米SiO2溶胶,并将其整理到棉织物上构造微观粗糙度,再用十六烷基三甲氧基硅烷(HDTMS)对棉织物进行修饰,以两步法制备超疏水棉织物。结果表明,当TEOS质量分数为3%,GPTMS质量分数为2%,氨水2 m L,反应温度30℃时,可制备出稳定分散的改性纳米SiO2溶胶。整理后棉织物的接触角为150.72°,滚动角为9°,沾水等级5级,实现了超疏水效果,且具有一定的耐洗性。  相似文献   

4.
以甲基三甲氧基硅烷(MTMS)为硅源,水为溶剂,在表面活性剂十六烷基三甲基溴化铵(CTAB)作用下,通过溶胶-凝胶反应,并采用环境压力干燥法(APD)制备了超疏水二氧化硅气凝胶.将二氧化硅气凝胶粉和聚二甲基硅氧烷(PDMS)通过喷涂法整理到棉织物上,分别采用扫描电镜、红外光谱仪、接触角测量仪对整理棉织物的结构、形貌和疏...  相似文献   

5.
棉织物的改性SiO2水溶胶耐久超疏水整理   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂,十六烷基三甲氧基硅烷为拒水添加剂,在表面活性剂十二烷基苯磺酸钠作用下,添加硅烷偶联剂,制备了改性纳米SiO2水溶胶,并将其用于棉织物的耐久疏水整理;探讨了硅烷偶联剂种类及添加量对棉织物耐洗性的影响.结果表明,用添加2%正硅酸四乙酯(TEOS)制得改性SiO2水溶胶,整理后棉织物具有耐久的拒水效果,皂洗20次后,棉织物的接触角和滚动角分别可达141.5°和25.0°,沾水评级75分.  相似文献   

6.
以甲基三甲氧基硅烷为前驱体、氨水为催化剂,在表面活性剂作用下,制备了二氧化硅水溶胶,并将其整理到棉织物上使表面产生一定粗糙度,再将棉织物浸渍拒水添加剂乙醇水解液后,在棉织物上形成纳米无氟超疏水表面.分别讨论了氨水用量、表面活性剂浓度对溶胶粒径及织物拒水性的影响,研究了不同结构与用量的拒水添加剂水解液对拒水性能的影响.结果表明:整理后棉织物表面粗糙度大大提高,其中,斜纹织物的接触角和滚动角分别为151.9°和13°,达到超疏水效果.  相似文献   

7.
以甲基三甲氧基硅烷(MTMS)为前驱体,在溶胶-凝胶反应过程中,加入纳米CuS,并采用十七氟癸基三乙氧基硅烷(PFDTES)对其改性,成功制备了氟硅烷改性CuS/SiO2复合气凝胶(F-CuS/SiO2),并将其与聚二甲基硅氧烷(PDMS)混合应用到棉织物上,制备了超双疏防紫外多功能棉织物。探讨了F-CuS/SiO2质量分数、PDMS质量分数、焙烘温度、焙烘时间等主要因素对整理棉织物疏水性能的影响。结果表明:当F-CuS/SiO2气凝胶为2%,PDMS为1%,焙烘温度为160℃,焙烘时间为8 min时,整理棉织物的疏水性能最佳,水滴接触角可达159.4°,油滴接触角可达151.8°,紫外线防护系数(UPF)为237.43,整理棉织物具有良好的超双疏防紫外自清洁效果。  相似文献   

8.
《印染》2017,(21)
以正硅酸四乙酯(TEOS)为前驱体,以正十六烷基三甲氧基硅烷(HDTMS)为改性剂,制备改性纳米二氧化硅(H-SiO)溶胶,并通过一步法工艺制备超疏水棉织物。探讨了TEOS和氨水用量对H2-SiO_2溶胶粒径及分散性的影响,研究了TEOS和HDTMS质量分数对整理棉织物疏水性的影响。结果表明:TEOS质量分数为2%,HDTMS质量分数为0.5%,氨水用量为2 m L,制备的H-SiO_2溶胶平均粒径为221 nm,粒径分布均匀;通过引入低表面能物质并增加粗糙度,棉纤维表面达到超疏水效果,接触角为154.3°,滚动角为10°。  相似文献   

9.
利用溶胶-凝胶技术,以正硅酸四乙酯、3-叠氮丙基三乙氧基硅烷为前驱体,氨水为催化剂制备光固化二氧化硅溶胶,以十六烷基三甲氧基硅烷为拒水剂对棉织物进行拒水整理.先浸轧光固化二氧化硅溶胶,再浸渍烷烃硅氧烷,无需焙烘,通过紫外光照直接赋予织物拒水性能.采用扫描电镜、X射线光电子能谱仪对整理后的棉织物进行测试.结果表明,光固化二氧化硅溶胶沉积在织物表面,提高了棉织物的粗糙度.接触角测试表明,棉织物对水接触角(5μL)达到155°;整理后的棉织物经30次皂洗后,与水的接触角仍大于135°.  相似文献   

10.
改性SiO2水溶胶在棉织物超疏水整理中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂,十六烷基三甲氧基硅烷为添加剂,在表面活性剂十二烷基苯磺酸钠作用下制备了改性纳米SiO2水溶胶,并将其成功应用于棉织物的超疏水整理.通过控制氨水用量和表面活性剂浓度,制备不同颗粒尺寸及粒径分布的改性SiO2水溶胶,讨论溶胶粒径大小及分布对棉织物拒水性的影响.采用...  相似文献   

11.
以正硅酸乙酯(TEOS)、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(KH560)、N-β-氨乙基-γ-氨丙基聚二甲基硅氧烷(ASO)等为原料,通过溶胶-凝胶和接枝共聚等方法制备了一种氨基硅-纳米SiO2杂化材料(ASO-SiO2),经一浸一轧、烘焙工艺整理,制得了超疏水棉织物,对水的静态接触角达155°.用红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、接触角测量仪等仪器研究了杂化材料的结构、微观形貌和超疏水性能.FT-IR分析表明,ASO-SiO2具有预期的分子结构;XPS分析和SEM观察证实,整理的棉织物表面存在一层超疏水杂化有机硅膜和大量的仿荷叶纳米微凸体;接触角测量发现,在一定范围内,随着ASO-SiO2用量的增加,整理棉织物的超疏水性明显提高.  相似文献   

12.
采用溶胶-凝胶法,以甲基三甲氧基硅烷为前驱体,氨水为催化剂.十六烷基三甲氧基硅烷为添加剂.在表面活性剂十二烷基苯磺酸钠作用下制备了改性纳米SiO2水溶液.并将其成功应用于棉织物的超疏水整理中。通过控制氨水用量和表面活性剂浓度.制备了不同颗粒尺寸及粒径分布的改性SiO2水溶胶.讨论溶胶粒径大小及分布对棉织物拒水性的影响。  相似文献   

13.
为了制备耐洗性疏水棉织物,以纯棉机织物为基体,进行柠檬酸改性处理,通过浸渍法(二浸二轧),使二氧化硅纳米颗粒附着在棉织物表面,增加织物表面粗糙度,再引入长链烷烃疏水基团以降低棉织物表面能,在共同作用下形成微/纳米拒水表面结构,从而获得耐洗性疏水棉织物。利用傅立叶红外光谱仪(FTIR)和激光粒度分析仪测定二氧化硅溶胶的结构和粒径分布,并用场发射扫描电子显微镜(SEM)和X射线电子能谱仪(XPS)表征整理前后棉织物的结构组成、表面元素以及形貌变化,同时考察柠檬酸质量分数、十六烷基三甲氧基硅烷(HDTMS)质量分数、烘焙温度和烘焙时间对织物水接触角的影响,研究棉织物的拒污性、耐水洗牢度以及物理性能在整理前后的变化。结果表明:当柠檬酸的质量分数为3%、十六烷基三甲氧基硅烷的质量分数为3%、烘焙温度为140℃、烘焙时间为150 s时,整理后织物的水接触角为157.3°,棉织物表面具有微/纳米粗糙结构;织物表现出良好的拒水性能,经过20次水洗后仍能保持较好的拒水效果;此外,经疏水处理后棉织物仍具有良好的物理性能。  相似文献   

14.
棉织物溶胶-凝胶法的超疏水整理   总被引:1,自引:0,他引:1  
以无机硅化物为前驱物,十六烷基三甲氧基硅烷(HDTMS)为疏水改性剂,通过溶胶-凝胶方法和自组装对纯棉织物进行超疏水整理.研究表明:整理的棉织物显示超疏水性,与水的接触角最高达151.6°,经过20次标准皂洗后能保持良好的疏水性(与水的接触角仍然超过95°).处理的棉织物断裂强力略有下降,撕破强力急剧增大(有近60%的提高),而CIE白度基本无变化.  相似文献   

15.
利用乙烯基三乙氧基硅烷(VTES)对二氧化钛(TiO2)进行修饰改性,将其与聚二甲基硅氧烷混合涂覆于棉织物表面以制备超疏水棉织物。通过单因素变量实验探究改性条件对超疏水性能的影响,综合利用接触角测试、亲水亲油分析、抗粘附性能和防渗透性能评价其超疏水能力。结果表明:在反应温度为40℃,改性1 g TiO2添加10 mL VTES时效果较好。改性TiO2与涂层剂质量比为1∶7时,涂层织物接触角达到160.3°,滑移角为8.7°,耐静水压为33 733 Pa,防渗透性和抗粘附性能优异,同时具备良好的耐水冲击性。  相似文献   

16.
采用电化学驱动水溶胶在织物表面定向原位沉积一层均匀、致密薄膜,赋予棉织物无氟超疏水性能。以表面活性剂为乳化剂制备Si O2水溶胶,并以辛基三乙氧基硅烷为疏水改性剂。研究了电化学沉积电压、沉积时间及表面活性剂质量浓度对织物疏水性能的影响,并分析了织物的疏水耐久性。电化学沉积棉织物与水的接触角可达157.7°,达到超疏水效果。经皂洗后织物接触角仍可达151.1°,具有一定的疏水耐久性。电化学沉积后棉织物力学性能及白度变化不大,而透气性略有降低,但不影响其服用性能。  相似文献   

17.
以甲基三甲氧基硅烷为前驱体,氨水为催化剂,在表面活性剂作用下制备了纳米SiO_2水溶胶。采用二步法工艺,先在棉织物上构造纳米SiO_2颗粒粗糙表面,再浸渍拒水剂十六烷基三甲氧基硅烷乙醇水解液进行拒水整理。研究了拒水添加剂用量和织物表面粗糙度对拒水性能的影响,考察了拒水整理后棉织物各项物理机械性能的变化。结果表明,经3%拒水添加剂整理后,棉织物的接触角(5μL)和滚动角(15μL)最佳可达145.9°和14°,且物理机械性能变化较小,但透气性有所下降。  相似文献   

18.
棉织物无氟超疏水整理   总被引:4,自引:0,他引:4       下载免费PDF全文
针对含氟拒水剂不环保的缺点,采用无氟溶胶-凝胶法赋予棉织物疏水性能。先浸轧二氧化硅溶胶,再将烷烃硅氧烷自组装到棉织物上,成功制备了具有超疏水性能的棉织物。通过控制催化剂用量,制备不同粒径的二氧化硅溶胶,并讨论了溶胶粒径、烷基硅氧烷结构和浓度及皂洗次数对接触角的影响。采用这种方法整理后棉织物与水的接触角可达到155°。利用扫描电子显微镜观察二氧化硅溶胶整理前后棉织物的表面形态并对性能进行测试,结果表明整理前后棉织物的物理机械性能变化较小。  相似文献   

19.
超疏水棉织物的硅水溶胶制备法   总被引:1,自引:0,他引:1  
为制备超疏水纺织品,通过水性溶胶-凝胶反应,在表面活性剂作用下制备了含甲基纳米SiO2(M-SiO2)和十六烷基改性纳米SiO2(H-SiO2)水溶胶,分别采用二步法(即先用M-SiO2水溶胶对棉织物浸轧处理,再进行低表面能修饰)、一步法浸轧H-SiO2水溶胶对棉织物进行超疏水整理。结果表明,制备的M-SiO2和H-SiO2水溶胶较稳定,粒径分布较窄,而H-SiO2水溶胶更容易在棉纤维表面引入致密的低表面能粗糙疏水膜,与二步法相比,一步法整理棉织物接触角达到152.1°,滚动角为8°,沾水等级100,具有工艺简单、节省原料、动态疏水效果更佳的优势。  相似文献   

20.
基于荷叶超疏水仿生理念,通过碱刻蚀和无氟疏水剂复合修饰的方法制备超疏水涤纶织物表面,探讨碱刻蚀工艺参数和三种无氟疏水剂的复合使用对织物超疏水效果的影响。结果表明:在碱质量浓度30 g/L、处理时间10 min、反应温度90℃的条件下,以十六烷基三甲氧基硅烷和十二烷基三甲氧基硅烷复合使用处理涤纶织物,可实现超疏水效果,其中静态接触角为152.45°,滑移角为5°,透气率为90.06 mm/s,透湿率为2 993.64 g/(m2·24 h),制备的织物具有良好的耐洗和耐污性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号